

OT150_Higham-Higham_FM.indd 1 11/1/2016 10:43:36 AM

Third EdiTion

dEsmond J. higham
University of Strathclyde
Glasgow, Scotland

nicholas J. higham

University of Manchester
Manchester, England

Society for Industrial and Applied Mathematics
Philadelphia

OT150_Higham-Higham_FM.indd 3 11/1/2016 10:43:37 AM

 is a registered trademark.

Copyright © 2017 by the Society for Industrial and Applied Mathematics

10 9 8 7 6 5 4 3 2 1

All rights reserved. Printed in the United States of America. No part of this book may be reproduced,
stored, or transmitted in any manner without the written permission of the publisher. For information,
write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia,
PA 19104-2688 USA.

MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information,
please contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000,
Fax: 508-647-7001, info@mathworks.com, www.mathworks.com.

No warranties, express or implied, are made by the publisher, authors, and their employers that the
programs contained in this volume are free of error. They should not be relied on as the sole basis to
solve a problem whose incorrect solution could result in injury to person or property. If the programs
are employed in such a manner, it is at the user’s own risk and the publisher, authors, and their
employers disclaim all liability for such misuse.

Publisher David Marshall
Acquisitions Editor Elizabeth Greenspan
Developmental Editor Gina Rinelli Harris
Managing Editor Kelly Thomas
Production Editor David Riegelhaupt
Copy Editor Sam Clark, T&T Productions Ltd, London
Production Manager Donna Witzleben
Production Coordinator Cally Shrader
Graphic Designer Lois Sellers

Library of Congress Cataloging-in-Publication Data

Names: Higham, Desmond J., 1964- | Higham, Nicholas J., 1961-
Title: MATLAB guide / Desmond J. Higham, University of Strathclyde, Glasgow,
 Scotland, United Kingdom, Nicholas J. Higham, University of Manchester,
 Manchester, United Kingdom.
Description: Third edition. | Philadelphia : Society for Industrial and
 Applied Mathematics, [2016] | Series: Other titles in applied mathematics
 ; 150 | Includes bibliographical references and index.
Identifiers: LCCN 2016039121 (print) | LCCN 2016039323 (ebook) | ISBN
 9781611974652 (print) | ISBN 9781611974669 (e-book)
Subjects: LCSH: MATLAB. | Numerical analysis--Data processing.
Classification: LCC QA297 .H5217 2016 (print) | LCC QA297 (ebook) | DDC
 518.0285/53--dc23
LC record available at https://lccn.loc.gov/2016039121

OT150_Higham-Higham_FM.indd 4 11/1/2016 10:43:37 AM

In memory of our mother and father, Doris and Ken.

Contents

List of Figures xiii

List of Tables xvii

List of Program Files xix

Preface xxi

1 A Brief Tutorial 1

2 Basics 23

2.1 MATLAB Desktop . 23

2.2 Interaction and Script Files . 23

2.3 More Fundamentals . 25

2.4 Help . 28

2.5 Variables and the Workspace . 30

3 Distinctive Features of MATLAB 35

3.1 Automatic Storage Allocation . 35

3.2 Variable Arguments Lists . 35

3.3 Complex Arrays and Arithmetic . 37

4 Arithmetic 39

4.1 IEEE Arithmetic . 39

4.2 Precedence . 41

4.3 Mathematical Functions . 42

4.4 Other Data Types . 42

5 Matrices 47

5.1 Matrix Generation . 47

5.2 Subscripting and the Colon Notation 54

5.3 Matrix and Array Operations . 57

5.3.1 Implicit Expansion . 61

5.4 Empty Matrices . 63

5.5 Matrix Manipulation . 64

5.6 Data Analysis . 66

6 Operators and Flow Control 71

6.1 Relational and Logical Operators . 71

6.2 Flow Control . 78

vii

viii Contents

7 Program Files 83

7.1 Scripts and Functions . 83

7.2 Naming and Editing Program Files 90

7.3 Working with Program Files and the MATLAB Path 91

7.4 Startup . 92

7.5 Command/Function Duality . 93

8 Graphics 97

8.1 Two-Dimensional Graphics . 97

8.1.1 Basic Plots . 97

8.1.2 Axes and Annotation . 102

8.1.3 Multiple Plots in a Figure . 109

8.2 Three-Dimensional Graphics . 113

8.3 Specialized Graphs for Displaying Data 125

8.4 Saving and Printing Figures . 129

8.5 On Things Not Treated . 131

9 Linear Algebra 135

9.1 Matrix Properties . 135

9.2 Norms and Condition Numbers . 136

9.3 Linear Equations . 138

9.3.1 Square System . 138

9.3.2 Overdetermined System . 140

9.3.3 Underdetermined System . 141

9.4 Inverse, Pseudoinverse, and Determinant 142

9.5 LU, LDL∗, and Cholesky Factorizations 143

9.6 QR Factorization . 145

9.7 Singular Value Decomposition . 146

9.8 Eigenvalue Problems . 148

9.8.1 Eigenvalues . 148

9.8.2 More about Eigenvalue Computations 150

9.8.3 Generalized Eigenvalues . 151

9.9 Iterative Linear Equation and Eigenproblem Solvers 153

9.10 Functions of a Matrix . 156

10 More on Functions 159

10.1 Function Handles . 159

10.2 Anonymous Functions . 160

10.3 Local Functions . 161

10.4 Default Input Arguments . 163

10.5 Variable Numbers of Arguments . 165

10.6 Argument Checking and Parsing . 167

10.7 Nested Functions . 168

10.8 Private Functions . 169

10.9 Recursive Functions . 170

10.10 Global and Persistent Variables . 173

10.11 Exemplary Functions in MATLAB 174

Contents ix

11 Numerical Methods: Part I 175
11.1 Polynomials and Data Fitting . 175
11.2 Nonlinear Equations . 180
11.3 Optimization . 184
11.4 The Fast Fourier Transform . 185

12 Numerical Methods: Part II 189
12.1 Numerical Integration . 189
12.2 Ordinary Differential Equations . 193

12.2.1 Examples with Ode45 . 193
12.2.2 Case Study: Pursuit Problem with Event Location 201
12.2.3 Stiff Problems, Differential-Algebraic Equations, and the Choice

of Solver . 205
12.3 Boundary-Value Problems . 213
12.4 Delay-Differential Equations . 221
12.5 Partial Differential Equations . 225

13 Input and Output 233
13.1 User Input . 233
13.2 Output to the Screen . 234
13.3 File Input and Output . 236
13.4 Fine Tuning the Display of Arrays . 238

14 Troubleshooting 241
14.1 Errors and Assertions . 241
14.2 Warnings . 243
14.3 Debugging . 245
14.4 Pitfalls . 246

15 Sparse Matrices 249
15.1 Sparse Matrix Generation . 249
15.2 Linear Algebra . 252

16 More on Coding 257
16.1 Elements of Coding Style . 257
16.2 Cleaning Up . 258
16.3 Checking and Comparing Code Files 259
16.4 Profiling . 260
16.5 P-Code . 261
16.6 Source Control . 264
16.7 Live Editor . 264
16.8 Creating a Toolbox . 265
16.9 Distributing Code Files . 268
16.10 Unit Tests . 269

17 Advanced Graphics 273
17.1 Objects, Handles, and Properties . 273
17.2 Root and Default Properties . 278
17.3 Animation . 279
17.4 Examples . 281

x Contents

18 Other Data Types and Multidimensional Arrays 291
18.1 Character Vectors and Arrays . 292
18.2 String Arrays . 295
18.3 Multidimensional Arrays . 297
18.4 Categorical Arrays . 299
18.5 Datetime and Duration Arrays . 300
18.6 Tables and Timetables . 304
18.7 Structures and Cell Arrays . 308

19 Object-Oriented Programming 315
19.1 Max-Plus Algebra Class . 315
19.2 Circulant Matrix Class . 321
19.3 On Things Not Treated . 324

20 The Symbolic Math Toolbox 325
20.1 Creating Symbolic Variables and Expressions 325
20.2 Equation Solving . 327
20.3 Calculus . 330

20.3.1 Integration . 330
20.3.2 Differentiation . 332
20.3.3 Solving Differentiation Equations 335
20.3.4 Taylor Expansions . 336

20.4 Linear Algebra . 337
20.5 Polynomials and Rationals . 339
20.6 Variable-Precision Arithmetic . 343
20.7 Other Features . 347

21 Graphs 349
21.1 Undirected Graphs . 349
21.2 Directed Graphs . 351

22 Large Data Sets 361
22.1 Datastores . 361
22.2 MapReduce . 364
22.3 Tall Arrays . 364

23 Optimizing Codes 369
23.1 Timing Code . 369
23.2 Vectorization . 370
23.3 Accessing Matrices by Column . 372
23.4 Preallocating Arrays . 374
23.5 Miscellaneous Optimizations . 374
23.6 Illustration: Bifurcation Diagram . 375
23.7 External Codes . 375

24 Tricks and Tips 379
24.1 Empty Arrays . 379
24.2 Exploiting Infinities . 380
24.3 Permutations . 380
24.4 Rank-1 Matrices . 382

Contents xi

24.5 Set Operations . 383
24.6 Subscripting Matrices as Vectors . 384
24.7 Avoiding If Statements . 385

25 The Parallel Computing Toolbox 387
25.1 The Parfor Loop . 388
25.2 Asynchronous Computing with Parfeval 392
25.3 Batch Computations . 393
25.4 Single Program, Multiple Data . 395
25.5 Distributed and Codistributed Arrays 397
25.6 GPU Computing . 398
25.7 On Things Not Treated . 401

26 Case Studies 403
26.1 Introduction . 403
26.2 Brachistochrone . 403
26.3 Small-World Networks . 404
26.4 Performance Profiles . 409
26.5 Multidimensional Calculus . 416
26.6 L-Systems and Turtle Graphics . 420
26.7 Black–Scholes Delta Surface . 422
26.8 Chutes and Ladders . 425
26.9 Pythagorean Sum . 430
26.10 Fisher’s Equation . 432

A The Top 111 MATLAB Functions 439

Glossary 445

Bibliography 447

Index 459

List of Figures

1.1 MATLAB desktop at start of tutorial. 2
1.2 Basic 2D picture produced by plot. 8
1.3 Histogram produced by histogram. 9
1.4 Growth of a random Fibonacci sequence. 10
1.5 Plot produced by collatz.m. 13
1.6 Plot produced by collbar.m. 14
1.7 Mandelbrot set approximation produced by mandel.m. 15
1.8 Phase plane plot from ode45. 17
1.9 Removal process for the Sierpinski gasket and Sierpinski gasket

approximation from gasket.m. 17
1.10 Sierpinski gasket approximation from barnsley.m. 19
1.11 3D picture produced by sweep.m. 20

2.1 Help browser. 30
2.2 Workspace browser. 32
2.3 Array Editor. 32

7.1 Histogram produced by rouldist. 85
7.2 MATLAB Editor/Debugger. 91

8.1 Simple x–y plots: default and nondefault. 98
8.2 Default color order for lines and markers. 98
8.3 Color wheel showing how cyan, magenta, and yellow are obtained by

combining red, green, and blue. 100
8.4 Two nondefault x–y plots. 101
8.5 loglog example. 102
8.6 plot(fft(eye(17))) with four variations of axis. 103
8.7 Use of ylim to change automatic y-axis limits. 104
8.8 Epicycloid example. 105
8.9 Legendre polynomial example, using legend. 107
8.10 Legendre polynomial example (revised), using legend. 108
8.11 Plot with text produced using the MATLAB LATEX interpreter. . . . 110
8.12 Bezier curve and control polygon. 111
8.13 Example with subplot and fplot. 112
8.14 Irregular grid of plots produced with subplot. 113
8.15 3D plot created with plot3. 115
8.16 Contour plots with fcontour and contour. 116
8.17 Contour plot labeled using clabel. 117
8.18 Surface plots with mesh and meshc. 117
8.19 Surface plots with surf, surfc, and waterfall. 118

xiii

xiv List of Figures

8.20 Surface plot with fsurf. 119
8.21 3D view of a 2D plot. 120
8.22 Color maps jet and parula. 120
8.23 Fractal landscape views. 123
8.24 surfc plot of matrix containing NaNs. 124
8.25 Riemann surface for z1/3. 124
8.26 2D bar plots. 126
8.27 3D bar plots. 127
8.28 Histograms produced with histogram, for a 1000-by-1 data vector. . 128
8.29 Pie charts. 129
8.30 Area graphs. 130
8.31 Three versions of the same plot: original, tuned, and converted to

LATEX. 132
8.32 From the 1964 Gatlinburg Conference on Numerical Algebra. 133

10.1 Sample output from rosy. 162
10.2 Koch curves created with function koch. 171
10.3 Koch snowflake created with function koch. 172

11.1 Least-squares polynomial fit of degree 3 and cubic spline for data from
1/(x+ (1− x)2). 177

11.2 Interpolation with pchip and spline. 179
11.3 Interpolating a sine curve at five points using interp1. 180
11.4 Interpolation with griddata. 181
11.5 Plot produced by fplot(@(x)x-tan(x),[-pi,pi]), grid. 182

12.1 Fresnel spiral. 192
12.2 Scalar ODE example. 194
12.3 Vector field for scalar ODE example. 196
12.4 Pendulum phase plane solutions. 197
12.5 Rössler system phase space solutions. 199
12.6 Attractor reconstruction using deval. 200
12.7 Pursuit example. 202
12.8 Pursuit example, with capture. 203
12.9 Chemical reaction solutions with ode45 and ode15s. 206
12.10 Zoom of chemical reaction solution from ode45. 206
12.11 Stiff ODE example, with Jacobian information supplied. 210
12.12 DAE solution components from chemakzo in Listing 12.6. 211
12.13 Water droplet BVP solved by bvp4c. 215
12.14 Liquid crystal BVP solved by bvp4c. 217
12.15 Skipping rope eigenvalue BVP solved by bvp4c. 220
12.16 Predator–prey model with delay and harvesting. 223
12.17 Neural network DDE. 225
12.18 Black–Scholes solution with pdepe. 227
12.19 Reaction–diffusion system solution with pdepe. 229

15.1 Wathen matrix and its Cholesky factor. 254
15.2 Wathen matrix and its Cholesky factor with symmetric reverse Cuthill–

McKee ordering (symrcm). 254

List of Figures xv

15.3 Wathen matrix and its Cholesky factor with symmetric minimum-
degree ordering (symamd). 254

16.1 profile viewer report for membrane example. 261
16.2 More from profile viewer report for membrane example. 262
16.3 profile viewer report for ops example. 263
16.4 Calculus example in the Live Editor. 266
16.5 First page of PDF file exported from the live script in Figure 16.4. . 267

17.1 Hierarchical structure of graphics objects (simplified). 274
17.2 Original plot and plot modified by set commands. 275
17.3 Straightforward use of subplot. 277
17.4 Modified version of Figure 17.3 postprocessed by modifying object

properties. 277
17.5 One frame from a movie. 280
17.6 Animated figure upon completion. 281
17.7 Plot with default and modified settings. 283
17.8 Word frequency bar chart created by script wfreq. 284
17.9 Selected Chebyshev polynomials Tk(x) on [−1, 1], created by script

cheb3plot. 285
17.10 Example with superimposed axes created by script garden. 287
17.11 Diagram created by sqrt ex. 287

18.1 Hierarchy of fundamental MATLAB data types. 292
18.2 Histogram of categorical array. 301
18.3 Plot of interpolated data with datetime vector on the x-axis. 304
18.4 cellplot(testmat). 313

20.1 The integrand in (20.1). 334
20.2 taylortool window. 337
20.3 sinx+ arcsinx. 338
20.4 Jacobi polynomials. 343

21.1 Undirected graph. 350
21.2 Weighted undirected graph and a minimum spanning tree. 351
21.3 Random graph from preferential attachment model. 352
21.4 Shortest path tree for graph in Figure 21.3. 352
21.5 Directed graph. 355
21.6 Neuronal network of C. elegans. 356
21.7 Subnetwork from C. elegans data. 356
21.8 Visualization of PageRank centrality in C. elegans subnetwork. . . . 358

22.1 Histograms of days and times of tweets. 364
22.2 Histogram of pages of index commands. 367

23.1 Approximate Brownian path. 373
23.2 Numerical bifurcation diagram. 376

25.1 Error for integral function, for integral
∫ 2

1
0.1/((x− λ)2 + 0.01) dx

depending on λ. 390

xvi List of Figures

26.1 Output from brach. 406
26.2 Output from the small-world simulations of small world. 407
26.3 Performance profile produced by ode pp. 413
26.4 Performance profile for fictitious data in 12-by-4 array A. 417
26.5 Contours and stationary points of camel function (26.4). 420
26.6 Members of the genus Matlabius Floribundum produced by lsys. . . 421
26.7 Black–Scholes delta picture from bsdelta. 425
26.8 spy plot of transition matrix from chute. 428
26.9 Probability of finishing chutes and ladders game in exactly n rolls and

at most n rolls. 428
26.10 Execution time of pythag versus requested accuracy. 433
26.11 Traveling-wave solutions for Fisher’s equation, from fisher. 434
26.12 Solution of Fisher’s equation for initial conditions (26.10) in moving

coordinate system, from fisher. 436

List of Tables

0.1 Selected highlights of MATLAB releases. xxiii

2.1 10*exp(1) displayed in several output formats. 26

2.2 Command line editing keypresses. 27

2.3 Information and demonstrations. 27

2.4 MATLAB directory structure (under Windows). 29

4.1 Arithmetic operator precedence. 41

4.2 Elementary and special mathematical functions. 42

4.3 Parameters for single- and double-precision data types. 43

5.1 Elementary matrices. 48

5.2 Special matrices. 52

5.3 Matrices available through gallery. 53

5.4 Matrices classified by property. 55

5.5 Elementary matrix and array operations. 59

5.6 Matrix manipulation functions. 64

5.7 Basic data analysis functions. 67

6.1 Selected logical is* functions. 73

6.2 Logical operators. 74

6.3 Operator precedence. 76

8.1 Options for the plot command. 99

8.2 RGB coordinates for the colors in Table 8.1, as used for setting the
color property. 99

8.3 Default values for some properties. 101

8.4 Some commands for controlling the axes. 103

8.5 Some of the TEX commands supported in text strings. 107

8.6 2D plotting functions. 114

8.7 3D plotting functions. 123

9.1 Logical is* functions for matrices. 136

9.2 Some examples of how to set the opts structure in linsolve. 140

9.3 Iterative linear equation solvers. 155

11.1 Top ten algorithms based on The Princeton Companion to Applied
Mathematics and Dongarra and Sullivan’s list. 187

12.1 Default values for absolute and relative error tolerances. 189

12.2 The MATLAB ODE solvers. 208

xvii

xviii List of Tables

18.1 Multidimensional array functions. 298
18.2 Subset of identifiers supported in the datetime 'Format' and

'InputFormat' specifiers. 302

20.1 Linear algebra functions in the Symbolic Math Toolbox. 340
20.2 Special polynomials. 342

21.1 Selected graph functions. 353

26.1 Data in transpose of array T from ode pp. 413

A.1 Elementary and specialized vectors and matrices. 439
A.2 Special variables and functions. 439
A.3 Array information and manipulation. 440
A.4 Logical operators. 440
A.5 Flow control. 440
A.6 Basic data analysis. 440
A.7 Graphics. 441
A.8 Linear algebra. 441
A.9 Functions connected with program files. 441
A.10 Miscellaneous. 442
A.11 Data types and conversions. 442
A.12 Managing the workspace. 442
A.13 Input and output. 442
A.14 Numerical methods. 443

List of Program Files

1.1 Script rfib.m. 11
1.2 Script collatz.m. 11
1.3 Script collbar.m. 13
1.4 Script mandel.m. 14
1.5 Function lorenz de.m. 15
1.6 Script lorenz run.m. 15
1.7 Function gasket.m. 16
1.8 Script barnsley.m. 19
1.9 Script sweep.m. 20

7.1 Script rouldist. 84
7.2 Function maxentry. 86
7.3 Function flogist. 87
7.4 Function cheby. 87
7.5 Function sqrtn. 89
7.6 Function marks2. 90

8.1 Script legendre plot. 108
8.2 Function pnorm plot. 110
8.3 Function bezier plot. 111
8.4 Function land. 121

10.1 Function fd deriv. 160
10.2 Function poly1err containing local function f. 163
10.3 Function rosy containing local function spiro. 164
10.4 Script test solver containing local function test. 164
10.5 Function companb. 166
10.6 Function moments. 167
10.7 Function arg checks. 169
10.8 Function rational ex containing a nested function r. 170
10.9 Function koch. 172

12.1 Function rossler ex. 198
12.2 Function rossler attract2. 200
12.3 Function fox1. 202
12.4 Function fox rabbit. 204
12.5 Function rcd. 209
12.6 Function chemakzo. 212
12.7 Function lcrun. 218
12.8 Function skiprun. 219
12.9 Function harvest. 222

xix

xx List of Program Files

12.10 Script neural. 224
12.11 Function bs. 228
12.12 Function mbiol. 230

13.1 Script print matrix. 239

14.1 Script fib that generates a runtime error. 242

16.1 Script badfun. 260
16.2 Script ops. 263
16.3 Script calculus.m. 265
16.4 Script test acos. 271

17.1 Script wfreq. 284
17.2 Script cheb3plot. 285
17.3 Script garden. 286
17.4 Script sqrt ex. 288

19.1 Code file maxplus; version for scalars. 317
19.2 Code file maxplus; version for matrices. 319
19.3 Code file circulant. 323

23.1 Script bif1. 376
23.2 Script bif2. 377

25.1 Function specrad randn. 392
25.2 Function parfeval specrad. 394

26.1 Function brach. 405
26.2 Script small world. 408
26.3 Function perfprof. 411
26.4 Function ode pp. 414
26.5 Script camel solve. 418
26.6 Function lsys. 423
26.7 Script lsys run. 424
26.8 Script bsdelta. 426
26.9 Script chute. 429
26.10 Function pythag. 431
26.11 Script fisher. 435

Preface

MATLAB®1 is an interactive system for numerical computation. Numerical analyst
Cleve Moler wrote the initial Fortran version of MATLAB in the late 1970s as a
teaching aid. It became popular for both teaching and research and evolved into a
commercial software package written in C. For many years now, MATLAB has been
widely used in universities and industry.

MATLAB has several advantages over more traditional means of numerical com-
puting (e.g., writing Fortran or C programs and calling numerical libraries).

• It allows quick and easy coding in a very high-level language.

• Data structures require minimal attention; in particular, arrays need not be
declared before first use.

• An interactive interface allows rapid experimentation and easy debugging.

• High-quality graphics and visualization facilities are available.

• MATLAB programs are completely portable across a wide range of platforms.

• Toolboxes can be added to extend the system, giving, for example, specialized
signal processing facilities and a symbolic manipulation capability.

• A wide range of user-contributed MATLAB programs is freely available on the
Internet.

Furthermore, MATLAB is a modern programming language and problem-solving en-
vironment: it has sophisticated data structures, contains built-in editing and debug-
ging tools, and supports object-oriented programming. These factors make MATLAB
an excellent language for teaching and a powerful tool for research and practical
problem-solving. Being interpreted, MATLAB inevitably suffers some loss of ef-
ficiency compared with compiled languages, but built-in performance acceleration
techniques (including some runtime compilation) reduce the inefficiencies and users
have the possibility of calling code and libraries written in other languages.

This book has two purposes. First, it aims to give a lively introduction to the most
popular features of MATLAB, covering all that most users will ever need to know.
We assume no prior knowledge of MATLAB, but the reader is expected to be familiar
with the basics of programming and with the use of the operating system under which
MATLAB is being run. We describe how and why to use MATLAB functions but
do not explain the mathematical theory and algorithms underlying them; instead,
references are given to the appropriate literature.

The second purpose of the book is to provide a compact reference to MATLAB.
The scope of MATLAB has grown dramatically as the package has been developed

1MATLAB is a registered trademark of The MathWorks, Inc.

xxi

xxii Preface

(see Table 0.1), and even experienced MATLAB users may be unaware of some of the
functionality of the latest versions. Indeed, the PDF documentation for MATLAB
runs to well over ten thousand pages. Hence we believe that there is a need for a
manual that is wide-ranging yet concise. We hope that our approach of focusing on the
most important features of MATLAB, combined with the book’s logical organization
and detailed index, will make MATLAB Guide a useful reference.

The book is intended to be used by students, researchers, and practitioners alike.
Our philosophy is to teach by giving informative examples rather than to treat every
function comprehensively. Full documentation is available in the MATLAB help sys-
tem, which can be accessed from the Home tab of the MATLAB Toolstrip, by typing
doc in the Command Window, or on the website of The Mathworks. The contents of
the help system are also available as PDF files, accessible via “PDF Documentation”
links in the help system. When we refer to “the help system” we mean any one of
these sources.

Our treatment includes many “hidden” or easily overlooked features of MATLAB
and we provide a wealth of useful tips, covering such topics as customizing graphics,
coding style, code optimization, and debugging. However, we discuss only officially
documented MATLAB features (undocumented features can change without warning
and cannot be relied on).

The main subjects omitted are Graphical User Interface (GUI) tools, which can
be useful as front-ends to MATLAB computations, and MEX files.

We have not included exercises; MATLAB is often taught in conjunction with
particular subjects, and exercises are best tailored to the context.

We have been careful to show complete, undoctored MATLAB output and to test
every piece of MATLAB code listed. The only editing we have done has been to omit
some lines of output (to save space) and replace them by a line consisting of “...”.

MATLAB runs on several operating systems and we concentrate on features com-
mon to all. We do not describe how to install or run MATLAB, or how to customize
it—the documentation should be consulted for this system-specific information.

A web page for the book can be found at http://www.siam.org/books/ot150.
It includes links to all the codes used as examples in the book, errata, and links to
various MATLAB-related web resources. It also includes the bibliography of the book
as a BibTEX bib file and in PDF form with embedded links.

What This Book Describes

This book describes MATLAB 9.1 (Release 2016b). If you are not sure which version
of MATLAB you are using, type ver or version at the MATLAB prompt.

How This Book Is Organized

The book begins with a tutorial that provides a quick tour of MATLAB. The rest of
the book is independent of the tutorial, so the tutorial can be skipped—for example,
by readers already familiar with MATLAB.

The chapters are ordered so as to introduce topics in a logical fashion, with the
minimum of forward references. A principal aim was to cover MATLAB programs and
graphics as early as possible, subject to being able to provide meaningful examples.
Later chapters contain material that is more advanced or less likely to be needed by
the beginner.

http://www.siam.org/books/ot150

Preface xxiii

Table 0.1. Selected highlights of MATLAB releases.

Year Version Notable features

1978 Classic Original Fortran version.
1984 1 Rewritten in C.
1985 2 30% more commands and functions, typeset docu-

mentation.
1987 3 Faster interpreter, color graphics, high-resolution

graphics printing.
1992 4 Sparse matrices, animation, visualization, user in-

terface controls, debugger, Handle Graphics®,∗ Mi-
crosoft Windows support.

1997 5 Profiler, object-oriented programming, multidimen-
sional arrays, cell arrays, structures, more sparse
linear algebra, new ordinary differential equation
solvers, browser-based help.

2000 6, R12 MATLAB desktop including Help browser, ma-
trix computations based on LAPACK with opti-
mized BLAS, function handles, eigs interface to
ARPACK, boundary-value problem and partial dif-
ferential equation solvers, graphics object trans-
parency, Java support.

2002 6.5, R13 Performance acceleration, more control in warning
and error handling.

2004 7.0, R14 Mathematics on nondouble operands (single preci-
sion, integer), anonymous functions, nested func-
tions, publishing an M-file to HTML, LATEX, etc.,
enhanced plot annotation.

2008 7.6, R2008a Enhanced object-oriented programming capabilities.
2008 7.7, R2008b Upgraded random number generators.
2012 8.0, R2012b Redesigned desktop with Toolstrip, new help system.
2013 8.2, R2013b table data type and categorical arrays.
2014 8.4, R2014b Source control, updated graphics system, datetime

arrays, datastore.
2015 8.6, R2015b New execution engine, graph and digraph classes
2016 9.0, R2016a Live Editor, performance testing framework
2016 9.1, R2016b Local functions in scripts, string arrays, tall ar-

rays, implicit expansion of arrays with dimensions
of length 1.

∗ Handle Graphics is a registered trademark of The MathWorks, Inc.

xxiv Preface

Using the Book

Readers new to MATLAB should begin by working through the tutorial in Chapter 1.
The tutorial gives a fast-paced overview of the capabilities of MATLAB, with all its
topics being covered in greater detail in subsequent chapters. Although it is designed
to be read sequentially, with most chapters building on material from earlier ones,
the book can be read in a nonsequential fashion by following cross-references and
making use of the index. It is difficult to do serious MATLAB computation without
a knowledge of arithmetic, matrices, colon notation, operators, flow control, and
program files, so Chapters 4–7 contain information essential for all users.

Appendix A lists our choice of the top 111 MATLAB functions—those that we
think every MATLAB user should know about. The beginner may like to tick off
these functions as they are learned, while intermediate users can pick out for study
those functions with which they are not already familiar.

From time to time we make reference to the extensive MATLAB documentation.
Reference information for a particular function, fun, can be obtained by typing help

fun or doc fun, but sometimes we need to refer to a page in HTML documentation
that is not directly accessible with a doc command. In this case we point to the
precise page in question by specifying a command such as

web([docroot '/matlab/numeric-types.html'])

Here, docroot refers to the location of the documentation on the system in question,
so this command should work on any MATLAB installation. Note that the quote
symbol, ', which displays in this way in MATLAB and is typeset this way in all the
MATLAB code in this book, is typed as the right or closing quote, ’, on the keyboard.

What’s New in the Third Edition

This third edition of the book is 25 percent longer than the second edition (2005) and
differs from it in several respects.

1. Many changes and new features introduced in MATLAB are incorporated.

2. All figures are now in color (they were monochrome in the second edition).

3. New “Asides”, highlighted in gray boxes, contain discussions on MATLAB-
related topics, such as anonymous functions, reproducibility, and color maps.

4. Our continuing experience in using MATLAB for teaching and research has led
to numerous improvements and additions—in particular, more examples.

5. The “Advanced Graphics” chapter (Chapter 17) (previously title “Handle Graph-
ics”) has been rewritten to reflect the major update to the graphics system
introduced in MATLAB 2014b.

6. A new chapter “Object-Oriented Programming” (Chapter 19) presents an in-
troduction to object-oriented programming in MATLAB through two examples
of classes.

7. The chapter “The Symbolic Math Toolbox” (Chapter 20) has been revised to
reflect the use of MuPAD as the underlying symbolic engine (previously the
engine was Maple), and the chapter has been extended.

Preface xxv

8. A new chapter “Graphs” (Chapter 21) describes the new MATLAB classes
graph and digraph, for representing and manipulating undirected graphs and
directed graphs.

9. A new chapter “Large Data Sets” (Chapter 22) describes MATLAB features for
handling data sets so large that they do not fit into the memory of the computer.

10. A new chapter “The Parallel Computing Toolbox” (Chapter 25) describes this
toolbox, which exploits multicore processors, clusters, and graphics processing
units (GPUs).

11. New sections have been added, including “Empty Matrices” (Section 5.4), “Ma-
trix Properties” (Section 9.1), “Argument Checking and Parsing” (Section 10.6),
“Fine Tuning the Display of Arrays” (Section 13.4), “Live Editor” (Section 16.7),
“Unit Tests” (Section 16.10), “String Arrays” (Section 18.2), “Categorical Ar-
rays” (Section 18.4), “Tables and Timetables” (Section 18.6), and “Timing
Code” (Section 23.1), and many existing sections contain new or reorganized
material.

12. Changes in MATLAB terminology have been incorporated. For example, the
terms “program files” and “local functions” replace what were previously called
“M-files” and “subfunctions”.

Future Versions of MATLAB

MATLAB will continue to evolve. New versions are released twice a year, denoted
“R20xya” and “R20xyb”. It is a good habit to inspect the release notes of each
new version in order to see what has changed. They can be found by typing doc

then selecting MATLAB or one of its installed toolboxes and following the link. The
release notes also give advanced notice of changes planned for the future, listed under
“Functionality being removed or changed”, enabling you to avoid using functions or
syntax that will become obsolete.

Acknowledgments

We are grateful to a number of people who offered helpful advice and comments during
the preparation of the book.

For the third edition: Penny Anderson, Bobby Cheng, Mike Croucher, Massim-
iliano Fasi, Heather Gorr, Stefan Güttel, Nick Hale, Richard Lang, Jasmina Lazic,
Steve Lord, Jos Martin, Umberto Noe, Sarah Palfreyman, Sam Relton, Ben Tordoff.

For the second edition: Penny Anderson, Paolo Bientinesi, David Carlisle, Jacek
Kierzenka, Cleve Moler, Jorge Moré, Jim Nagy, Larry Shampine.

For the first edition: Penny Anderson, Christian Beardah, Tom Bryan, Brian
Duffy, Cleve Moler, Damian Packer, Harikrishna Patel, Larry Shampine, Françoise
Tisseur, Nick Trefethen, Jack Williams.

It has been a pleasure working with Elizabeth Greenspan, Gina Rinelli Harris,
David Riegelhaupt, and Lois Sellers (SIAM), and Sam Clark (T&T Productions Ltd,
London), for the third edition; Beth Gallagher, Sara Murphy, Linda Thiel, and Kelly
Thomas for the second edition; and Beth Gallagher, Vickie Kearn, Michelle Mont-
gomery, Deborah Poulson, Lois Sellers, Kelly Thomas, and Marianne Will for the first
edition.

xxvi Preface

For those of you that have not experienced MATLAB,

we would like to try to show you what everybody is excited about....

The best way to appreciate PC-MATLAB is, of course, to try it yourself.

— JOHN LITTLE and CLEVE B. MOLER, A Preview of PC-MATLAB (1985)

In teaching, writing and research,

there is no greater clarifier than

a well-chosen example.

— CHARLES F. VAN LOAN, Using Examples to Build Computational Intuition (1995)

A new era in scientific computing

has been ushered in by the development of MATLAB.

— LLOYD N. TREFETHEN, Spectral Methods in MATLAB (2000)

Chapter 1

A Brief Tutorial

The best way to learn MATLAB is by trying it yourself, and hence we begin with a
whirlwind tour. Working through the examples below will give you a feel for the way
that MATLAB operates and an appreciation of its power and flexibility.

The tutorial is entirely independent of the rest of the book—all the MATLAB
features introduced are discussed in greater detail in the subsequent chapters. Indeed,
in order to keep this chapter brief, we have not explained all the functions used here.
You can use the index to find out more about particular topics that interest you.

The tutorial contains commands for you to type at the command line. In the
last part of the tutorial we give examples of script and function files—the MATLAB
versions of programs and functions, subroutines, or procedures in other languages.
These files are short, so you can type them in quickly. Alternatively, you can download
them from the website mentioned in the preface on p. xxii. You should experiment
as you proceed, keeping the following points in mind.

• Uppercase and lowercase characters are not equivalent (MATLAB is case sen-
sitive).

• Typing the name of a variable will cause MATLAB to display its current value.

• A semicolon at the end of a command suppresses the display of any output that
would otherwise be produced in the Command Window.

• MATLAB uses parentheses, (), square brackets, [], and curly braces, {}, and
these are not interchangeable.

• The up arrow and down arrow keys can be used to scroll through your previous
commands. Also, an old command can be recalled by typing the first few
characters followed by up arrow.

• You can type help topic to access online help on the command, function, or
symbol topic. Note that hyperlinks, indicated by underlines, are provided that
will take you to related help items and the more complete documentation in the
Help browser. Type doc topic to go directly to the Help browser.

• If you press the tab key after partially typing a function or variable name,
MATLAB will attempt to complete it, offering you a selection of choices if there
is more than one possible completion.

• You can quit MATLAB by typing exit or quit.

Having entered MATLAB, you should work through this tutorial by typing in the
text that appears after the MATLAB prompt, >>, in the Command Window. After
showing you what to type, we display the output that is produced. We begin with

1

2 A Brief Tutorial

Figure 1.1. MATLAB desktop at start of tutorial.

>> a = [1 2 3]

a =

1 2 3

This means that you are to type “a = [1 2 3]”, after which you will see the output
“a =” and “1 2 3” on separate lines separated by a blank line, as shown in Fig-
ure 1.1. (To save space we will subsequently omit blank lines in MATLAB output.
You can tell MATLAB to suppress blank lines by typing format compact.) This
example sets up a 1-by-3 array a (a row vector). In the next example, semicolons
separate the entries:

>> c = [4; 5; 6]

c =

4

5

6

A semicolon tells MATLAB to start a new row, so c is 3-by-1 (a column vector). Now
you can multiply the arrays a and c:

>> a*c

ans =

32

Here, you performed an inner product: a 1-by-3 array multiplied into a 3-by-1 array.
MATLAB automatically assigned the result to the variable ans, which is short for
answer. An alternative way to compute an inner product is with the dot function:

>> dot(a,c)

A Brief Tutorial 3

ans =

32

Inputs to MATLAB functions are specified after the function name and within paren-
theses. You may also form the outer product:

>> A = c*a

A =

4 8 12

5 10 15

6 12 18

Here, the answer is a 3-by-3 matrix that has been assigned to A.
The product a*a is not defined, since the dimensions are incompatible for matrix

multiplication:

>> a*a

Error using *

Inner matrix dimensions must agree.

Arithmetic operations on matrices and vectors come in two distinct forms. Matrix-
sense operations are based on the normal rules of linear algebra and are obtained
with the usual symbols +, -, *, /, and ^. Array-sense operations are defined to act
elementwise and are generally obtained by preceding the symbol with a dot. Thus if
you want to square each element of a you can write

>> b = a.^2

b =

1 4 9

Since the new vector b is 1-by-3, like a, you can form the array product of it with a:

>> a.*b

ans =

1 8 27

MATLAB has many mathematical functions that operate in the array sense when
given a vector or matrix argument. For example,

>> exp(a)

ans =

2.7183 7.3891 20.0855

>> log(ans)

ans =

1 2 3

>> sqrt(a)

ans =

1.0000 1.4142 1.7321

MATLAB displays floating-point numbers to 5 decimal digits, by default, but always
stores numbers and computes with them to the equivalent of 16 decimal digits. The
output format can be changed using the format command:

4 A Brief Tutorial

>> format long

>> sqrt(a)

ans =

1.000000000000000 1.414213562373095 1.732050807568877

>> format

The last command reinstates the default output format of 5 digits (and loose
line spacing, which we always suppress in this book, as noted above). Large or
small numbers are displayed in exponential notation, with a power of 10 scale factor
preceded by e:

>> 2^(-24)

ans =

5.9605e-08

Various data analysis functions are also available:

>> sum(b), mean(c)

ans =

14

ans =

5

As this example shows, you may include more than one command on the same line
by separating them with commas. If a command is followed by a semicolon then
MATLAB suppresses the output:

>> pi

ans =

3.1416

>> y = tan(pi/6);

The function pi, which is built into MATLAB, returns the value π. The variable ans

always contains the most recent unassigned expression, so after the assignment to y,
ans still holds the value π.

You may set up a two-dimensional array by using spaces to separate entries within
a row and semicolons to separate rows:

>> B = [-3 0 -1; 2 5 -7; -1 4 8]

B =

-3 0 -1

2 5 -7

-1 4 8

At the heart of MATLAB is a powerful range of linear algebra functions. For example,
recalling that c is a 3-by-1 vector, you may wish to solve the linear system B*x = c.
This can be done with the backslash operator:

>> x = B\c

x =

A Brief Tutorial 5

-1.2995

1.3779

-0.1014

You can check the result by computing the relative residual in the Euclidean norm:

>> norm(B*x-c)/(norm(B)*norm(x))

ans =

9.6513e-17

While nonzero because of rounding errors in the computations, this residual is about
as small as we can expect, given that MATLAB computes to the equivalent of about
16 decimal digits.

The eigenvalues of B can be found using eig:

>> e = eig(B)

e =

-3.1361

6.5680 + 5.1045i

6.5680 - 5.1045i

Here, i is the imaginary unit,
√
−1. You may also specify two output arguments for

the function eig:

>> [V,D] = eig(B,'nobalance')

V =

0.9829 + 0.0000i -0.0385 - 0.0393i -0.0385 + 0.0393i

-0.1266 + 0.0000i -0.8005 + 0.0000i -0.8005 + 0.0000i

0.1337 + 0.0000i 0.1683 + 0.5725i 0.1683 - 0.5725i

D =

-3.1361 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

0.0000 + 0.0000i 6.5680 + 5.1045i 0.0000 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 6.5680 - 5.1045i

In this case the columns of V are eigenvectors of B and the diagonal elements of D

are the corresponding eigenvalues. Here, we gave eig the optional input argument
'nobalance', which disables the default balancing that attempts to improve the
scaling of the matrix. Single (closing) quotes act as string delimiters, so 'nobalance'
is a string. Many MATLAB functions take string arguments.

The colon notation is useful for constructing vectors of equally spaced values. For
example,

>> v = 1:6

v =

1 2 3 4 5 6

Generally, m:n generates the vector with entries m, m+1, . . . , n. Nonunit increments
can be specified with m:s:n, which generates entries that start at m and increase (or
decrease) in steps of s as far as n:

>> w = 2:3:10, y = 1:-0.25:0

w =

2 5 8

y =

1.0000 0.7500 0.5000 0.2500 0

6 A Brief Tutorial

You may construct big matrices out of smaller ones by following the conventions
that (a) square brackets enclose an array, (b) spaces or commas separate entries in a
row, and (c) semicolons separate rows:

>> C = [A,[8;9;10]], D = [B;a]

C =

4 8 12 8

5 10 15 9

6 12 18 10

D =

-3 0 -1

2 5 -7

-1 4 8

1 2 3

The element in row i and column j of the matrix C (where i and j always start at
1) can be accessed as C(i,j):

>> C(2,3)

ans =

15

More generally, C(i1:i2,j1:j2) picks out the submatrix formed by the intersection
of rows i1 to i2 and columns j1 to j2:

>> C(2:3,1:2)

ans =

5 10

6 12

You can build certain types of matrix automatically. For example, identities and
matrices of zeros and ones can be constructed with eye, zeros, and ones:

>> I3 = eye(3,3), Y = zeros(3,5), Z = ones(2)

I3 =

1 0 0

0 1 0

0 0 1

Y =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Z =

1 1

1 1

Note that for these functions the first argument specifies the number of rows and the
second the number of columns; if both numbers are the same then only one need
be given. The functions rand and randn work in a similar way, generating random
entries from the uniform distribution over [0, 1] and the normal (0, 1) distribution,
respectively. The numbers generated depend on the state of the random number
generator. By seeding the generator you can make your experiments repeatable.
Here, the seed is set to 20:

A Brief Tutorial 7

>> rng(20)

>> F = rand(3), g = randn(1,5)

F =

0.5881 0.8158 0.3787

0.8977 0.0359 0.5185

0.8915 0.6918 0.6580

g =

-1.3543 -0.9625 0.8736 0.8499 1.6579

Before the Days of rand

In 1955, the appropriately named RAND Corporation published the book
A Million Random Digits with 100, 000 Normal Deviates [144] as a resource
for researchers conducting large-scale randomized experiments. The book,
also available in punched card format, listed “random” numbers generated
via an electric roulette wheel. The book was reissued in 2001, attracting a
range of amusing online reviews.

By this point several variables have been created in the workspace. You can obtain
a list with the who command:

>> who

Your variables are:

A C F V Z ans c g w y

B D I3 Y a b e v x

You can obtain a more detailed list showing the size and class of each variable by
typing whos. Alternatively, look at the Workspace browser, which is displayed by
default in the MATLAB desktop (see Figure 1.1).

Like most programming languages, MATLAB has loop constructs. The following
example uses a for loop to evaluate the continued fraction

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 + 1

,

which approximates the golden ratio, (1 +
√

5)/2. The evaluation is done from the
bottom up:

>> r = 2;

8 A Brief Tutorial

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 1.2. Basic 2D picture produced by plot.

>> for k = 1:10, r = 1 + 1/r; end

>> r

r =

1.6181

Loops involving while can be found later in this tutorial.
The plot function produces two-dimensional (2D) pictures:

>> t = 0:0.005:1; z = exp(10*t.*(t-1)).*sin(12*pi*t);

>> plot(t,z)

Here, plot(t,z) joins the points t(i),z(i) using the default solid linetype. MATLAB
opens a figure window in which the picture is displayed. Figure 1.2 shows the result.
You can close a figure window by typing close at the command line.

You can produce a histogram with the function histogram:

>> histogram(randn(1000,1))

Here, histogram is given 1000 points from the normal (0,1) random number generator.
The result is shown in Figure 1.3.

You are now ready for more challenging computations. A random Fibonacci se-
quence {xn} is generated by choosing x1 and x2 and setting

xn+1 = xn ± xn−1, n ≥ 2.

Here, the ± indicates that + and − must have equal probability of being chosen.
Viswanath [175] analyzed this recurrence and showed that, with probability 1, for
large n the quantity |xn| increases like a multiple of cn, where c = 1.13198824 . . . (see
also [45]). You can test Viswanath’s result as follows:

>> clear

A Brief Tutorial 9

Figure 1.3. Histogram produced by histogram.

>> rng(100)

>> x = [1 2];

>> for n = 2:999, x(n+1) = x(n) + sign(rand-0.5)*x(n-1); end

>> semilogy(1:1000,abs(x))

>> c = 1.13198824;

>> hold on

>> semilogy(1:1000,c.^[1:1000])

>> hold off

Here, clear removes all variables from the workspace. The for loop stores a random
Fibonacci sequence in the array x; MATLAB automatically extends x each time a
new element x(n+1) is assigned. The semilogy function then plots n on the x-axis
against abs(x) on the y-axis, with logarithmic scaling for the y-axis. Typing hold on

tells MATLAB to superimpose the next picture on top of the current one. The second
semilogy plot produces a line of slope c. The overall picture, shown in Figure 1.4, is
consistent with Viswanath’s theory.

The MATLAB commands used to generate Figure 1.4 stretched over several lines.
This is inconvenient for a number of reasons, not least because if a change is made
to the experiment then it is necessary to reenter all the commands. To avoid this
difficulty you can employ a script. Create a file named rfib.m identical to Listing 1.1
in your current directory.2 You can call up the MATLAB Editor/Debugger from the
home tab of the Toolstrip or by typing edit in the Command Window; pwd displays
the current directory and ls or dir lists its contents. Now type

>> rfib

at the command line. This will reproduce the picture in Figure 1.4. Running rfib in
this way is essentially the same as typing the commands in the file at the command

2“Directory” is a synonym for “folder”. We use the former term throughout this book.

10 A Brief Tutorial

0 100 200 300 400 500 600 700 800 900 1000
10

0

10
10

10
20

10
30

10
40

10
50

10
60

Figure 1.4. Growth of a random Fibonacci sequence.

line, in sequence. Note that in Listing 1.1 blank lines and indentation are used to
improve readability, and we have made the number of iterations a variable, m, so that
it can be more easily changed. The script also contains helpful comments—all text on
a line after the % character is ignored by MATLAB. Having set up these commands
in a script you are now free to experiment further. For example, changing rng(100)

to rng(101) generates a different random Fibonacci sequence, and adding the line
title('Random Fibonacci Sequence') at the end of the file will put a title on the
graph.

Our next example involves the Collatz iteration, which, given a positive integer
x1, has the form xk+1 = f(xk), where

f(x) =

{
3x+ 1, if x is odd,
x/2, if x is even.

In words: if x is odd, replace it by 3x + 1, and if x is even, halve it. It has been
conjectured that this iteration will always lead to a value of 1 (and hence thereafter
cycle between 4, 2, and 1) whatever starting value x1 is chosen. There is ample
computational evidence to support this conjecture, which is variously known as the
Collatz problem, the 3x + 1 problem, the Syracuse problem, Kakutani’s problem,
Hasse’s algorithm, and Ulam’s problem. However, a rigorous proof has so far eluded
mathematicians. For further details, see [111] or type “Collatz problem” into your
favorite search engine. You can investigate the conjecture by creating the script
collatz.m shown in Listing 1.2. In this file a while loop and an if statement are
used to implement the iteration. The input command prompts you for a starting
value. The appropriate response is to type an integer and then hit return or enter:

>> collatz

Enter an integer bigger than 2: 27

Here, the starting value 27 has been entered. The iteration terminates and the re-
sulting picture is shown in Figure 1.5.

A Brief Tutorial 11

Listing 1.1. Script rfib.m.

%RFIB Random Fibonacci sequence.

rng(100) % Set random number state.

m = 1000; % Number of iterations.

x = [1 2]; % Initial conditions.

for n = 2:m-1 % Main loop.

x(n+1) = x(n) + sign(rand-0.5)*x(n-1);

end

semilogy(1:m,abs(x))

c = 1.13198824; % Viswanath's constant.

hold on

semilogy(1:m,c.^(1:m))

hold off

Listing 1.2. Script collatz.m.

%COLLATZ Collatz iteration.

n = input('Enter an integer bigger than 2: ');

narray = n;

count = 1;

while n ~= 1

if rem(n,2) == 1 % Remainder modulo 2.

n = 3*n+1;

else

n = n/2;

end

count = count + 1;

narray(count) = n; % Store the current iterate.

end

plot(narray,'*-') % Plot with * marker and solid line style.

title(['Collatz iteration starting at ' int2str(narray(1))])

12 A Brief Tutorial

To investigate the Collatz problem further, the script collbar in Listing 1.3 plots
a bar graph of the number of iterations required to reach the value 1, for starting
values 1, 2, . . . , 29. The result is shown in Figure 1.6. For this picture, the function
grid adds grid lines that extend from the axis tick marks, and xlabel and ylabel

add labels to the x- and y-axes.
The well-known and much-studied Mandelbrot set can be approximated graphi-

cally in just a few lines of MATLAB. It is defined as the set of points c in the complex
plane for which the sequence generated by the map z 7→ z2 + c, starting with z = c,
remains bounded [140, Chap. 14]. The script mandel in Listing 1.4 produces the plot
of the Mandelbrot set shown in Figure 1.7. The script contains calls to linspace

of the form linspace(a,b,n), which generate an equally spaced vector of n values
between a and b. The meshgrid and complex functions are used to construct a ma-
trix C that represents the rectangular region of interest in the complex plane. The
waitbar function plots a bar showing the progress of the computation (the variable
h is a “handle” to the wait bar). The plot itself is produced by contourf, which
plots a filled contour. The expression abs(Z)<Z max in the call to contourf detects
points that have not exceeded the threshold Z max and that are therefore assumed
to lie in the Mandelbrot set; the double function is applied in order to convert the
resulting logical array to numeric form. You can experiment with mandel by changing
the region that is plotted, via the linspace calls, the number of iterations it max,
and the threshold Z max. Note that mandel changes the color map so that the image
is displayed in gray and white instead of the default blue and yellow; this makes it
much easier to see the boundary of the set. The default color map can be restored
with colormap(’default’).

Next we solve the ordinary differential equation (ODE) system

d

dt
y1(t) = 10(y2(t)− y1(t)),

d

dt
y2(t) = 28y1(t)− y2(t)− y1(t)y3(t),

d

dt
y3(t) = y1(t)y2(t)− 8y3(t)/3.

This is an example from the Lorenz equations family (see [161]). We take initial
conditions y(0) = [0, 1, 0]T and solve over 0 ≤ t ≤ 50. The program file lorenz_de in
Listing 1.5 is an example of a MATLAB function. Given t and y, this function returns
the right-hand side of the ODE as the vector yprime. This is the form required by
the MATLAB ODE solving functions. The script lorenz_run in Listing 1.6 uses
the MATLAB function ode45 to solve the ODE numerically and then produces the
(y1, y3) phase plane plot shown in Figure 1.8. You can see an animated plot of the
solution by typing lorenz, which calls one of the MATLAB demonstrations (type
demos for the complete list).

Now we give an example of a recursive function, that is, a function that calls
itself. The Sierpinski gasket [139, Sec. 2.2] is based on the following process. Given
a triangle with vertices Pa, Pb, and Pc, we remove the triangle with vertices at the
midpoints of the edges, (Pa +Pb)/2, (Pb +Pc)/2, and (Pc +Pa)/2. This removes the
“middle quarter” of the triangle, as illustrated in Figure 1.9(a). Effectively, we have
replaced the original triangle with three “subtriangles”. We can now apply the middle
quarter removal process to each of these subtriangles to generate nine subsubtriangles,
and so on. The Sierpinski gasket is the set of all points that are never removed by
repeated application of this process. The function gasket in Listing 1.7 implements

A Brief Tutorial 13

0 20 40 60 80 100 120

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Collatz iteration starting at 27

Figure 1.5. Plot produced by collatz.m.

Listing 1.3. Script collbar.m.

%COLLBAR Collatz iteration bar graph.

N = 29; % Use starting values 1,2,...,N.

niter = zeros(N,1); % Preallocate array.

for i = 1:N

count = 0;

n = i;

while n ~= 1

if rem(n,2) == 1

n = 3*n+1;

else

n = n/2;

end

count = count + 1;

end

niter(i) = count;

end

bar(niter) % Bar graph.

grid % Add horizontal and vertical grid lines.

title('Collatz iteration counts')

xlabel('Starting value','FontSize',12) % Label x-axis.

ylabel('Number of iterations','FontSize',12) % Label y-axis.

14 A Brief Tutorial

0 5 10 15 20 25 30

Starting value

0

20

40

60

80

100

120
N

u
m

b
e

r
o

f
it
e

ra
ti
o

n
s

Collatz iteration counts

Figure 1.6. Plot produced by collbar.m.

Listing 1.4. Script mandel.m.

%MANDEL Mandelbrot set.

h = waitbar(0,'Computing...');

x = linspace(-2.1,0.6,2001);

y = linspace(-1.1,1.1,2001);

[X,Y] = meshgrid(x,y);

C = complex(X,Y);

Z_max = 1e6; it_max = 50;

Z = C;

for k = 1:it_max

Z = Z.^2 + C;

waitbar(k/it_max)

end

close(h)

contourf(x,y,double(abs(Z)<Z_max))

colormap([1 1 1; 1/2 1/2 1/2]) % Gray inside, white outside.

title('Mandelbrot Set','FontSize',16,'FontWeight','normal')

A Brief Tutorial 15

Figure 1.7. Mandelbrot set approximation produced by mandel.m.

Listing 1.5. Function lorenz de.m.

function yprime = lorenz_de(t,y)

%LORENZ_DE Lorenz equations.

% yprime = lorenz_de(t,y).

yprime = [10*(y(2)-y(1))

28*y(1)-y(2)-y(1)*y(3)

y(1)*y(2)-8*y(3)/3];

Listing 1.6. Script lorenz run.m.

%LORENZ_RUN ODE solving example: Lorenz.

tspan = [0 50]; % Solve for 0 <= t <= 50.

yzero = [0;1;0]; % Initial conditions.

[t,y] = ode45(@lorenz_de,tspan,yzero);

plot(y(:,1),y(:,3)) % (y_1,y_3) phase plane.

xlabel('y_1','FontSize',14)

ylabel('y_3 ','FontSize',14,'Rotation',0,'HorizontalAlignment','right')

title('Lorenz equations','FontSize',16,'FontWeight','normal')

16 A Brief Tutorial

Listing 1.7. Function gasket.m.

function gasket(Pa,Pb,Pc,level)

%GASKET Recursively generated Sierpinski gasket.

% GASKET(Pa, Pb, Pc, level) generates an approximation to

% the Sierpinski gasket, where the 2-vectors Pa, Pb, and Pc

% define the triangle vertices.

% level is the level of recursion.

if level == 0

% Fill the triangle with vertices Pa, Pb, Pc.

fill([Pa(1),Pb(1),Pc(1)],[Pa(2),Pb(2),Pc(2)],[0.5 0.5 0.5]);

hold on

else

% Recursive calls for the three subtriangles.

gasket(Pa,(Pa+Pb)/2,(Pa+Pc)/2,level-1)

gasket(Pb,(Pb+Pa)/2,(Pb+Pc)/2,level-1)

gasket(Pc,(Pc+Pa)/2,(Pc+Pb)/2,level-1)

end

the removal process. The input arguments Pa, Pb, and Pc define the vertices of the
triangle, and level specifies how many times the process is to be applied. If level

is nonzero then gasket calls itself three times with level reduced by 1, once for each
of the three subtriangles. When level finally reaches zero, the appropriate triangle
is drawn and filled with gray. The following code generates Figure 1.9(b).

level = 5;

Pa = [0;0];

Pb = [1;0];

Pc = [0.5;sqrt(3)/2];

gasket(Pa,Pb,Pc,level)

hold off

title_string = ['Gasket level = ' num2str(level)];

title(title_string,'FontSize',16,'FontWeight','normal')

axis('equal','off')

(Figure 1.9(a) was generated in the same way with level = 1.) In the last line, the
call to axis makes the units of the x- and y-axes equal and turns off the axes and
their labels. You should experiment with different initial vertices Pa, Pb, and Pc, and
different levels of recursion, but keep in mind that setting level bigger than 8 may
overstretch either your patience or your computer’s resources.

A Brief Tutorial 17

-20 -15 -10 -5 0 5 10 15 20

y
1

0

5

10

15

20

25

30

35

40

45

50

y
3

Lorenz equations

Figure 1.8. Phase plane plot from ode45.

(a) (b)

Figure 1.9. Removal process for the Sierpinski gasket (a) and Sierpinski gasket ap-
proximation (b), from gasket.m.

18 A Brief Tutorial

The Sierpinski gasket can also be generated by playing Barnsley’s “chaos game”
[139, Sec. 1.3]. We choose one of the vertices of a triangle as a starting point. Then
we pick one of the three vertices at random, take the midpoint of the line joining this
vertex with the starting point, and plot this new point. Then we take the midpoint
of the line joining this point and a randomly chosen vertex as the next point, which
is plotted, and the process continues. The script barnsley in Listing 1.8 implements
the game. Figure 1.10 shows the result of choosing 1000 iterations:

>> barnsley

Enter number of points (try 1000) 1000

The reason for the colorful markers is that MATLAB provides several colors for lines
and markers and cycles among them if the color is not explicitly specified. Try
experimenting with the number of points, n, the type and size of marker in the plot

command, and the location of the starting point.
We finish with the script sweep in Listing 1.9, which generates the volume-

swept three-dimensional (3D) object shown in Figure 1.11. Here, the command
surf(X,Y,Z) creates a 3D surface where the height Z(i,j) is specified at the point
(X(i,j),Y(i,j)) in the (x, y)-plane. The script is not written in the most obvious
fashion, which would use two nested for loops. Instead it is vectorized. To under-
stand how it works you will need to be familiar with Chapter 5 and Section 24.4. You
can experiment with the script by changing the parameter N and the function that
determines the variable radius: try replacing sqrt by other functions, such as log,
sin, or abs.

A Brief Tutorial 19

Listing 1.8. Script barnsley.m.

%BARNSLEY Barnsley's game to compute Sierpinski gasket.

rng(1) % Set random number state.

V = [0, 1, 0.5; 0, 0, sqrt(3)/2]; % Columns give triangle vertices.

point = V(:,1); % Start at a vertex.

n = input('Enter number of points (try 1000) ');

for k = 1:n

node = ceil(3*rand); % node is 1, 2, or 3 with equal prob.

point = (V(:,node) + point)/2;

plot(point(1),point(2),'.','MarkerSize',15)

hold on

end

axis('equal','off')

hold off

Figure 1.10. Sierpinski gasket approximation from barnsley.m.

20 A Brief Tutorial

Listing 1.9. Script sweep.m.

%SWEEP Generates a volume-swept 3D object.

N = 10; % Number of increments - try increasing.

z = linspace(-5,5,N)';

radius = sqrt(1+z.^2); % Try changing sqrt to some other function.

theta = 2*pi*linspace(0,1,N);

X = radius*cos(theta);

Y = radius*sin(theta);

Z = z(:,ones(1,N));

surf(X,Y,Z)

axis equal

Figure 1.11. 3D picture produced by sweep.m.

A Brief Tutorial 21

If you are one of those experts who

wants to see something from MATLAB right now

and would rather read the instructions later,

this page is for you.

— 386-MATLAB User’s Guide (1989)

Do not be too timid and squeamish about your actions.

All life is an experiment.

The more experiments you make the better.

— RALPH WALDO EMERSON

Chapter 2

Basics

2.1. MATLAB Desktop

The MATLAB desktop, shown in its default layout in Figure 1.1, contains a Toolstrip
at the top with tabs labeled “Home”, “Plots”, and “Apps”. Clicking on a tab opens
up a strip or ribbon of tools, and clicking on the tab again closes it. Alternatively,
the icon containing a triangle located at the top right-hand corner of the desktop can
be used to open or close the active tab.

The window arrangement can be customized using the Layout item on the Home
tab. The Preferences item allows many aspects of MATLAB to be customized, in-
cluding font type, font size, colors, and Command History behavior, amongst many
other things.

2.2. Interaction and Script Files

MATLAB is an interactive system. You type commands at the prompt (>>) in the
Command Window and computations are performed when you press the enter or
return key. At its simplest level, MATLAB can be used like a pocket calculator:

>> (1+sqrt(5))/2

ans =

1.6180

>> 2^(-53)

ans =

1.1102e-016

The first example computes (1 +
√

5)/2 and the second 2−53. Note that the second
result is displayed in exponential notation: it represents 1.1102×10−16. The variable
ans is created (or overwritten, if it already exists) when an expression is not assigned
to a variable. It can be referenced later, just like any other variable. Unlike in most
programming languages, variables are not declared prior to use but are created by
MATLAB when they are assigned:

>> x = sin(22)

x =

-0.0089

Here, we have assigned to x the sine of 22 radians. The printing of output can be
suppressed by appending a semicolon. The next example assigns a value to y without
displaying the result:

23

24 Basics

>> y = 2*x + exp(-3)/(1+cos(0.1));

Commas or semicolons are used to separate statements that appear on the same line:

>> x = 2, y = cos(1/4), z = 3*x*y

x =

2

y =

0.9689

z =

5.7320

>> x = 5; y = cos(0.5); z = x*y^2

z =

3.8508

Note again that the semicolon causes output from the preceding command to be
suppressed.

MATLAB is case sensitive. This means, for example, that x and X are distinct
variables and that the exponential function must be typed as exp, not Exp or EXP.

To perform a sequence of related commands, you can write them into a script,
which is a text file with a .m filename extension. For example, suppose you wish to
process a set of exam marks using the MATLAB functions sort, mean, median, and
std, which, respectively, sort into increasing order and compute the arithmetic mean,
the median, and the standard deviation. You can create a file in the current directory,
say marks.m, of the form

%MARKS

exmark = [12 0 5 28 87 3 56];

exsort = sort(exmark)

exmean = mean(exmark)

exmed = median(exmark)

exstd = std(exmark)

The % denotes a comment line. Typing

>> marks

at the command line then produces the output

exsort =

0 3 5 12 28 56 87

exmean =

27.2857

exmed =

12

exstd =

32.8010

Note that calling marks is entirely equivalent to typing each of the individual com-
mands in sequence at the command line. More details on creating and using script
files can be found in Chapter 7.

Throughout this book, unless otherwise indicated, the prompt >> signals an ex-
ample that has been typed at the command line and it is immediately followed by

2.3 More Fundamentals 25

the corresponding MATLAB output (if any). A sequence of MATLAB commands
without the prompt should be interpreted as forming a script file (or part of one).

To quit MATLAB type exit or quit.

2.3. More Fundamentals

MATLAB has many useful functions in addition to the usual ones found on a pocket
calculator. For example, you can set up a random matrix of order 3 by typing

>> A = rand(3)

A =

0.8147 0.9134 0.2785

0.9058 0.6324 0.5469

0.1270 0.0975 0.9575

Here, each entry of A is chosen independently from the uniform distribution on the
interval [0, 1]. The inv command inverts A:

>> inv(A)

ans =

-1.9958 3.0630 -1.1690

2.8839 -2.6919 0.6987

-0.0291 -0.1320 1.1282

The inverse has the property that its product with the matrix is the identity matrix.
We can check this property for our example by typing

>> ans*A

ans =

1.0000 0.0000 0.0000

-0.0000 1.0000 -0.0000

0 0.0000 1.0000

The product has ones on the diagonal, as expected. The off-diagonal elements dis-
played as plus or minus 0.0000 are, in fact, not exactly zero. MATLAB stores num-
bers and computes to a relative precision of about 16 decimal digits. By default it
displays numbers in a 5-digit fixed-point format. While concise, this is not always the
most useful format. The format command can be used to set a 5-digit floating-point
format (also known as scientific or exponential notation):

>> format short e

>> ans

ans =

1.0000e+00 1.1102e-16 2.2204e-16

-4.9960e-16 1.0000e+00 -1.1102e-16

0 1.3878e-17 1.0000e+00

Now we see that some of the off-diagonal elements of the product are nonzero but
tiny—the result of rounding errors. The default format can be reinstated by typing
format short, or simply format. The format command has many options, which can
be seen by typing help format: see Table 2.1 for some examples. All the MATLAB
output shown in this book was generated with format compact in effect, which sup-
presses blank lines.

26 Basics

Table 2.1. 10*exp(1) displayed in several output formats. The space between short

or long and e or g can be omitted.

format short 27.1828

format long 27.18281828459045

format short e 2.7183e+001

format long e 2.718281828459045e+001

format short g 27.183

format long g 27.1828182845905

format hex 403b2ecd2dd96d44

format bank 27.18

format rat 2528/93

If you want to change the format and later restore the original format (which may
have been changed from the MATLAB default) you can do so using get and set, as
follows:

>> format_saved = get(0,'Format'); % Save current format.

>> format longe % Or any other format option.

% Computations ...

>> set(0,'Format',format_saved) % Restore previous format.

If you make an error when typing at the prompt you can correct it using the
arrow keys and the backspace or delete keys. Previous command lines can be recalled
using the up arrow key, and the down arrow key takes you forward through the
command list. If you type a few characters before hitting up arrow then the most
recent command line beginning with those characters is recalled. You can scroll
through commands previously typed in the current and past sessions in the Command
History window, which pops up by default when up arrow is pressed and can be docked
or closed. Double-clicking on a command in this window executes it. Table 2.2
summarizes the command line editing keypresses. Many of these keypresses have
alternatives that can be seen, and if desired changed, from Preferences-Keyboard-
Shortcuts.

Tab completion is a valuable command line time-saver and is also useful when
you don’t remember the precise name of a function or variable. If you press the tab
key after typing a few characters of a function or variable name then MATLAB will
attempt to complete the name, and it will offer you a menu of choices if there is more
than one possible completion.

It is possible to enter multiple lines at the command line and run them all at once:
press Shift-Enter at the end of each line and then press Enter at the end of the last
line to run all of the lines.

Type clc to clear the Command Window.
A MATLAB computation can be aborted by pressing Ctrl-c. If MATLAB is

executing a built-in function it may take some time to respond to this keypress.
A line can be terminated with three periods (...), which causes the next line to

be a continuation line:

>> x = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ...

1/6 + 1/7 + 1/8 + 1/9 + 1/10

2.3 More Fundamentals 27

Table 2.2. Command line editing keypresses.

Key Operation
Up arrow Recall previous line
Down arrow Recall next line
Left arrow Back one character
Right arrow Forward one character
Ctrl left arrow Left one word
Ctrl right arrow Forward one word
Home Beginning of line
End End of line
Esc Clear line
Del Delete character under cursor
Backspace Delete previous character
Ctrl-k Delete (kill) to end of line
Insert Toggle insert mode
Shift-home Select to beginning of line
Shift-end Select to end of line

Table 2.3. Information and demonstrations.

bench Benchmarks to test the speed of your computer
computer Computer on which MATLAB is running
demo A collection of demonstrations
license License number
ver Version number and release dates of MATLAB and

toolboxes
version Version number and release dates of MATLAB

x =

2.9290

The value of x illustrates the fact that, unlike in some other programming languages,
arithmetic on integers is done in floating-point arithmetic and so can be written in
the natural way.

Commands are available for interacting with the operating system: cd (change
directory), including cd .. to change to the parent directory; copyfile (copy file);
mkdir (make directory); pwd (print working directory); dir or ls (list directory); and
delete (delete file). A command can be issued to the operating system by preceding
it with an exclamation mark, !.

Some MATLAB commands giving access to information and demonstrations are
listed in Table 2.3.

28 Basics

2.4. Help

MATLAB is renowned for the richness of its documentation and the ease of access to
it. Help is provided within both the Command Window and the Help browser.

The Help browser (see Figure 2.1) provides complete documentation, which in-
cludes help for all MATLAB functions, including numerous examples; release and
upgrade notes; and links to the documentation in PDF form on the MathWorks web-
site. The Help browser is accessed by clicking the “?” icon on the toolbar of the
MATLAB desktop or by selecting Help from the Home tab. From the Command
Window you can type doc foo to call up help on the command or function foo in the
Help browser. Type

web([docroot '/matlab/functionlist.html'])

for a complete list of MATLAB functions, which can be arranged alphabetically or
by category.

Typing help foo displays information about foo in the Command Window. For
example:

>> help sqrt

sqrt Square root.

sqrt(X) is the square root of the elements of X. Complex

results are produced if X is not positive.

See also sqrtm, realsqrt, hypot.

Reference page for sqrt

Other functions named sqrt

The terms sqrtm, realsqrt, and hypot, and all of the last two lines, are underlined
in the Command Window to indicate that they are hyperlinks: clicking on them takes
you to the relevant entry.

Note that it is a convention that function names are capitalized within the help
lines in a program file. However, when you type help fun, any occurrences of upper-
case FUN in the leading comment lines are converted into lowercase.

Typing help by itself produces a list of directories, of which a subset is shown in
Table 2.4 (extra directories will be shown for any toolboxes that are available, and if
you have added your own directories to the path they will be shown as well). This list
provides an overview of how MATLAB functions are organized. Typing help followed
by a directory name (e.g., help general) gives a list of functions in that directory.
Type help help for further details on the help command.

Type phrase in the search box of the Help browser, or type docsearch phrase

in the Command Window, to execute a full-text search of the Help browser docu-
mentation for the indicated phrase. You can also type lookfor keyword to search for
functions relating to the keyword. Example:

>> lookfor elliptic

pdepe - Solve initial--boundary-value problems for

parabolic-elliptic PDEs in 1-D.

ellipj - Jacobi elliptic functions.

ellipke - Complete elliptic integral.

2.4 Help 29

Table 2.4. MATLAB directory structure (under Windows).

>> help

HELP topics:

matlab\datafun - Data analysis and Fourier transforms.

matlab\datatypes - Data types and structures.

matlab\elfun - Elementary math functions.

matlab\elmat - Elementary matrices and matrix manipulation.

matlab\funfun - Function functions and ODE solvers.

matlab\general - General purpose commands.

matlab\iofun - File input and output.

matlab\lang - Programming language constructs.

matlab\matfun - Matrix functions - numerical linear algebra.

matlab\ops - Operators and special characters.

matlab\polyfun - Interpolation and polynomials.

matlab\randfun - Random matrices and random streams.

matlab\sparfun - Sparse matrices.

matlab\specfun - Specialized math functions.

matlab\strfun - Character strings.

matlab\timefun - Time and dates.

matlab\demos - Examples.

matlab\graph2d - Two dimensional graphs.

matlab\graph3d - Three dimensional graphs.

matlab\graphics - Handle Graphics.

matlab\plottools - Graphical plot editing tools

matlab\scribe - Annotation and Plot Editing.

matlab\specgraph - Specialized graphs.

matlab\uitools - Graphical user interface components and tools

matlab\images - (No table of contents file)

matlab\optimfun - Optimization and root finding.

matlab\codetools - Commands for creating and debugging code

matlab\datamanager - (No table of contents file)

matlab\datastoreio - (No table of contents file)

matlab\graphfun - (No table of contents file)

matlab\guide - Graphical user interface design environment

matlab\helptools - Help commands.

matlab\mapreduceio - (No table of contents file)

testframework\core - (No table of contents file)

testframework\performance - (No table of contents file)

matlab\verctrl - Version control.

matlab\winfun - Windows Operating System Interface Files (COM/DDE)

matlab\apps - (No table of contents file)

matlab\audiovideo - Audio and Video support.

30 Basics

Figure 2.1. Help browser.

2.5. Variables and the Workspace

Several functions provide special values:

• pi is π = 3.14159 . . . ;

• i is the imaginary unit,
√
−1, as is j. Complex numbers are entered as, for

example, 2-3i, 2-3*i, 2-3*sqrt(-1), or complex(2,-3). Note that the form
2-3*i may not produce the intended results if i is being used as a variable.
Ambiguity can be avoided by writing 1i instead of i, since the former is always
interpreted as the imaginary unit. Therefore 2-3*1i, or simply 2-3i, always
produces the expected complex number.

Functions generating constants related to floating-point arithmetic are described in
Chapter 4. It is possible to override existing variables and functions by creating new
ones with the same names. This practice should be avoided as it can lead to confusion.
However, the use of i and j as counting variables is widespread.

MATLAB fully supports complex arithmetic, with conj, real, and imag taking
the conjugate and the real and imaginary parts, respectively. For example,

>> w = (-1)^0.25

w =

0.7071 + 0.7071i

>> z = conj(w)

z =

0.7071 -0.7071i

2.5 Variables and the Workspace 31

>> [real(z) imag(z)]

ans =

0.7071 -0.7071

>> exp(i*pi)

ans =

-1.0000 + 0.0000i

A list of variables in the workspace can be obtained by typing who, while whos

shows the size and class of each variable as well. For example, after executing the
commands so far in this chapter, whos produces

Name Size Bytes Class Attributes

A 3×3 72 double

ans 1×1 16 double complex

exmark 1×7 56 double

exmean 1×1 8 double

exmed 1×1 8 double

exsort 1×7 56 double

exstd 1×1 8 double

w 1×1 16 double complex

x 1×1 8 double

y 1×1 8 double

z 1×1 16 double complex

To display the total number of bytes occupied type w = whos; sum([w.bytes]). (In
earlier versions of MATLAB this total was shown automatically at the end of the
list.) An existing variable var can be removed from the workspace by typing clear

var, while clear or clearvars clears all existing variables.
The workspace can also be examined via the Workspace browser (see Figure 2.2),

which is invoked from the Layout menu on the Home tab or by typing workspace.
A variable, A, say, can be edited interactively in spreadsheet format in the Array
Editor by double-clicking on the variable name (see Figure 2.3); alternatively, typing
openvar('A') calls up the Array Editor on A.

Variable names are case sensitive (as mentioned above) and consist of a letter
followed by any combination of letters, digits, and underscores, up to a maximum
number of characters given by the value returned by the namelengthmax function:

>> namelengthmax

ans =

63

To save variables for recall in a future MATLAB session type save filename; all
variables in the workspace are then saved to filename.mat. Alternatively, select the
Save Workspace option on the Home tab. The command

save filename A x

saves just the variables A and x. The command load filename loads in the variables
from filename.mat, and individual variables can be loaded using the same syntax as
for save. The default is to save and load variables in binary form, but options allow

32 Basics

Figure 2.2. Workspace browser. Here, we have added extra columns “Size”, “Bytes”,
and “Class” by right-clicking on the bar containing the column headings.

Figure 2.3. Array Editor.

ASCII form to be specified. MAT-files can be ported between MATLAB implementa-
tions running on different computer systems. An Import Wizard, accessible from the
Import Data option on the Home tab, or by typing uiimport, provides a graphical
interface to the MATLAB import functions.

Often you need to capture MATLAB Command Window output for incorporation
into a report. This is most conveniently done with the diary command. If you type
diary filename then all subsequent input and (most) text output is copied to the
specified file; diary off turns off the diary facility. After typing diary off you can
later type diary on to cause subsequent output to be appended to the same diary
file.

To print the value of a variable or expression without the name of the variable or
ans being displayed, you can use disp:

>> A = eye(2); disp(A)

1 0

0 1

2.5 Variables and the Workspace 33

>> disp('Result:'), disp(1/7)

Result:

0.1429

Classic MATLAB
While MATLAB today has thousands of functions, the original Fortran
version [122] had only 80, which are listed here.

< M A T L A B >

Version of 01/10/84

HELP is available

<>

help

Type HELP followed by

INTRO (To get started)

NEWS (recent revisions)

ABS ANS ATAN BASE CHAR CHOL CHOP CLEA COND CONJ COS

DET DIAG DIAR DISP EDIT EIG ELSE END EPS EXEC EXIT

EXP EYE FILE FLOP FLPS FOR FUN HESS HILB IF IMAG

INV KRON LINE LOAD LOG LONG LU MACR MAGI NORM ONES

ORTH PINV PLOT POLY PRIN PROD QR RAND RANK RCON RAT

REAL RETU RREF ROOT ROUN SAVE SCHU SHOR SEMI SIN SIZE

SQRT STOP SUM SVD TRIL TRIU USER WHAT WHIL WHO WHY

< > () = . , ; \ / ' + - * :

Most of those functions have survived into today’s MATLAB. Two that
didn’t are CHOP and FLOP. CHOP(p) caused the least significant p digits to
be chopped off after each floating-point operation, and was useful for sim-
ulating machines with shorter word lengths. FLOP provided a count of the
floating-point operations done and was a convenient tool in algorithm devel-
opment. With today’s processors and software neither function is practical
to implement.

Help!

— Title of a song by LENNON and MCCARTNEY (1965)

If ifs and ans were pots and pans,

there’d be no trade for tinkers.

— Proverb

Chapter 3

Distinctive Features of MATLAB

MATLAB has three features that distinguish it from most other modern programming
languages and problem-solving environments. We introduce them in this chapter and
elaborate on them later in the book.

3.1. Automatic Storage Allocation

As we saw in Chapter 2, variables are not declared prior to being assigned. This
applies to arrays as well as scalars. Moreover, MATLAB automatically expands the
dimensions of arrays in order for assignments to make sense. Thus, starting with an
empty workspace, we can set up a 1-by-3 vector x of zeros with

>> x(3) = 0

x =

0 0 0

and then expand it to length 6 with

>> x(6) = 0

x =

0 0 0 0 0 0

Automatic allocation of storage is one of the most convenient and distinctive features
of MATLAB. For efficiency, however, it can be desirable to preallocate arrays; see
Section 23.4.

3.2. Variable Arguments Lists

MATLAB contains a large (and user-extendible) collection of functions. They take
zero or more input arguments and return zero or more output arguments. MATLAB
enforces a clear distinction between input and output: input arguments appear on
the right of the function name, within parentheses, and output arguments appear on
the left, within square brackets. Functions can support a variable number of input
and output arguments, so that on a given call not all arguments need be supplied.
Functions can even vary their behavior depending on the precise number and type of
arguments supplied. We illustrate with some examples.

The norm function computes the Euclidean norm, or 2-norm, of a vector (the
square root of the sum of squares of the absolute values of the elements):

>> x = [3 4];

35

36 Distinctive Features of MATLAB

>> norm(x)

ans =

5

A different norm can be obtained by supplying norm with a second input argument.
For example, the 1-norm (the sum of the absolute values of the elements) is obtained
with

>> norm(x,1)

ans =

7

If the second argument is not specified then it defaults to 2, giving the 2-norm. The
max function has a variable number of output arguments. With an input vector and
one output argument it returns the largest element of the vector:

>> m = max(x)

m =

4

If a second output argument is supplied then the index of the largest element is
assigned to it:

>> [m,k] = max(x)

m =

4

k =

2

For another example of the versatility of MATLAB functions consider size, which
returns the dimensions of an array. In the following example we set up a 5-by-3
random matrix and then request its dimensions:

>> A = rand(5,3);

>> s = size(A)

s =

5 3

With one output argument, size returns a 1-by-2 vector with first element the number
of rows of the input argument and second element the number of columns. However,
size can also be given two output arguments, in which case it sets them to the number
of rows and columns individually:

>> [m,n] = size(A)

m =

5

n =

3

Some functions vary their computations significantly depending on the number of
output arguments requested. For example, the code

A = rand(100);

[V,D] = eig(A);

3.3 Complex Arrays and Arithmetic 37

computes the eigenvalues of A (placed in the diagonal elements of D) and the corre-
sponding eigenvectors (the columns of V), but if we replace the function call by e =

eig(A) then just a vector of eigenvalues is computed, which is a much less expensive
computation. (For more on eig, see Section 9.8.)

3.3. Complex Arrays and Arithmetic

The fundamental data type in MATLAB is a multidimensional array of complex num-
bers, with real and imaginary parts stored in double-precision floating-point format.
Important special cases are matrices (two-dimensional arrays), vectors, and scalars.
Most computation in MATLAB is performed in floating-point arithmetic, and com-
plex arithmetic is used automatically when the data is complex. There is no separate
real data type (though for reals the imaginary part is not stored). This can be con-
trasted with Fortran, in which different data types are used for real and complex
numbers, and with C, C++, and Java, which support only real numbers and real
arithmetic.

MATLAB also has integer data types, which are intended mainly for memory-
efficient storage, rather than computation; see Section 4.4.

The guts of MATLAB are written in C.

Much of MATLAB is also written in MATLAB,

because it’s a programming language.

— CLEVE B. MOLER (in [118]) (1999)

In some ways, MATLAB resembles SPEAKEASY and, to a lesser extent, APL.

All are interactive terminal languages that ordinarily

accept single-line commands or statements,

process them immediately,

and print the results.

All have arrays as the principal data type.

— CLEVE B. MOLER, Demonstration of a Matrix Laboratory (1982)

Chapter 4

Arithmetic

4.1. IEEE Arithmetic

Floating-point arithmetic in MATLAB conforms to the IEEE standard [87], [88].
Numeric variables are, by default, of the data type double (double precision) and
occupy a 64-bit word.

Nonzero double-precision numbers range in magnitude between approximately
10−308 and 10+308, and the unit roundoff is 2−53 ≈ 1.11×10−16. (See [70, Chap. 2] or
[137] for a detailed explanation of floating-point arithmetic.) The significance of the
unit roundoff is that it is a bound for the relative error in converting a real number
to floating-point form and also a bound for the relative error in adding, subtract-
ing, multiplying, or dividing two floating-point numbers or taking the square root of
a floating-point number. In simple terms, MATLAB stores floating-point numbers
and carries out elementary operations to an accuracy of about 16 significant decimal
digits.

The function eps returns the distance from 1.0 to the next larger floating-point
number:

>> eps

ans =

2.2204e-16

This distance, 2−52, is twice the unit roundoff. More generally, eps(x) returns the
(positive) distance from x to the next larger (in magnitude) floating-point number:

>> eps(1/2)

ans =

1.1102e-16

>> eps(2)

ans =

4.4409e-16

Because MATLAB implements the IEEE standard, every computation produces
a floating-point number, albeit possibly one of a special type. If the result of a
computation is larger than the value returned by the function realmax then overflow
occurs and the result is Inf (also written inf), representing infinity. Similarly, a
result more negative than -realmax produces -Inf. Example:

>> realmax

ans =

1.7977e+308

39

40 Arithmetic

>> -2*realmax

ans =

-Inf

>> 1.1*realmax

ans =

Inf

A computation whose result is not mathematically defined produces a NaN, stand-
ing for Not a Number. The result NaN (also written nan) is generated by expressions
such as 0/0, inf/inf, and 0 ∗ inf:

>> 0/0

ans =

NaN

>> inf/inf

ans =

NaN

>> inf-inf

ans =

NaN

Once generated, a NaN propagates through all subsequent computations:

>> NaN-NaN

ans =

NaN

>> 0*NaN

ans =

NaN

The function realmin returns the smallest positive normalized floating-point num-
ber. Any computation whose result is smaller than realmin either underflows to zero
if it is smaller than eps∗realmin or produces a subnormal number—one with leading
zero bits in its mantissa. To illustrate:

>> realmin

ans =

2.2251e-308

>> realmin*eps

ans =

4.9407e-324

>> realmin*eps/2

ans =

0

4.2 Precedence 41

Table 4.1. Arithmetic operator precedence.

Precedence level Operator
1 (highest) Exponentiation (^)
2 Unary plus (+), unary minus (-)
3 Multiplication (*), division (/)
4 (lowest) Addition (+), subtraction (-)

To obtain further insight, repeat all the above computations after typing format hex,
which displays the binary floating-point representation of the numbers in hexadecimal
format.

4.2. Precedence

Arithmetic operators in MATLAB obey the same precedence rules as those in most
calculators and computer languages. The rules are shown in Table 4.1. (For a more
complete table, showing the precedence of all MATLAB operators, see Table 6.3.)
For operators of equal precedence, evaluation is from left to right. Parentheses can
always be used to overrule priority, and their use is recommended to avoid ambiguity.
Examples:

>> 2^10/10

ans =

102.4000

>> 2 + 3*4

ans =

14

>> -2 - 3*4

ans =

-14

>> 1 + 2/3*4

ans =

3.6667

>> 1 + 2/(3*4)

ans =

1.1667

>> [2^2^3 2^(2^3)]

ans =

64 256

42 Arithmetic

Table 4.2. Elementary and special mathematical functions (“fun*” indicates that more
than one function name begins “fun”).

cos, sin, tan, csc, sec, cot Trigonometric
cosd, sind, tand, cscd, secd, cotd

acos, asin, atan, atan2, asec, acsc, acot Inverse trigonometric
acosd, asind, atand, asecd, acscd, acotd

cosh, sinh, tanh, sech, csch, coth Hyperbolic
acosh, asinh, atanh, asech, acsch, acoth Inverse hyperbolic
log, log2, log10, log1p, exp, expm1 Exponential
sqrt, hypot, nthroot, nextpow2, pow2 Roots, powers
ceil, fix, floor, round Rounding
abs, angle, conj, imag, real, unwrap Complex
mod, rem, sign Remainder, sign
airy, bessel*, beta*, ellipj, ellipke, erf*, Mathematical
expint, gamma*, legendre, psi

factor, factorial, gcd, isprime, lcm, primes, Number theoretic
nchoosek, perms, rat, rats

cart2sph, cart2pol, pol2cart, sph2cart Coordinate transforms

4.3. Mathematical Functions

MATLAB contains a large set of mathematical functions. Typing help elfun and
help specfun calls up full lists of elementary and special functions. A selection is
listed in Table 4.2. The trigonometric functions take arguments in radians, with “*d”
versions taking arguments in degrees. Of particular note are expm1 and log1p, which
accurately compute ex − 1 and log(1 + x), respectively, for |x| � 1, avoiding the
cancellation that would affect the direct calculation. (Explanations of the formulas
underlying these two functions can be found in [70, Sec. 1.14.1, Problem 1.5].)

4.4. Other Data Types

The MATLAB double is not the only data type on which arithmetic can be performed.
A single data type, corresponding to IEEE single-precision arithmetic, also exists.
There are two main reasons for working with single-precision numbers.

• To save storage. A scalar single occupies a 32-bit word rather than the 64-bit
word occupied by a double. Hence, for example, a single vector of length 2000
can be stored in the same space as a double vector of length 1000.

• To obtain faster execution, the lower storage requirement of single precision
over double-precision results in less data movement and therefore reduces data
transfer costs. Moreover, in principle, elementary operations in single-precision
arithmetic require only about half the time of the corresponding double-precision
operations. Whether the latter benefit is seen depends on how the arithmetic
is implemented in hardware.

Another use of single-precision arithmetic is to explore the accuracy of a numerical
algorithm. It is a standard technique to apply an algorithm in both single- and double-

4.4 Other Data Types 43

Table 4.3. Parameters for single- and double-precision data types.

Data type Size eps Range

single 32 bits 2−23 ≈ 1.19× 10−7 10±38

double 64 bits 2−52 ≈ 2.22× 10−16 10±308

precision arithmetic and use the difference of the results as an estimate of the error
in the single-precision solution.

The drawbacks of single precision are that it has half the precision of double
precision (about 8 significant decimal digits versus 16) and it has a much smaller
range, so overflow and underflow are much more likely to occur. The parameters of
single-precision arithmetic can be obtained as follows:

>> eps('single')

ans =

single

1.1921e-07

>> realmax('single')

ans =

single

3.4028e+38

>> realmin('single')

ans =

single

1.1755e-38

Note that for most data types other than double, when MATLAB displays the value
of a variable (here ans) it includes a header containing the data type, as well as the
dimensions if the result is an array. Table 4.3 compares the key parameters for the
single and double precisions.

Single-precision numbers can be created in MATLAB in two ways: by conversion
from another arithmetic data type using the single function, or by using the functions
eye, ones, or zeros with an extra ’single’ argument (these functions are described
in Section 5.1). For example,

>> format long, pi_s = single(pi), pi_d = pi

pi_s =

single

3.1415927

pi_d =

3.141592653589793

>> delta = pi_s - pi_d

delta =

single

8.7422777e-08

44 Arithmetic

>> A = ones(2,'single')

A =

2×2 single matrix

1 1

1 1

>> whos

Name Size Bytes Class Attributes

A 2×2 16 single

delta 1×1 4 single

pi_d 1×1 8 double

pi_s 1×1 4 single

This example shows several things. First, the single-precision version of pi differs from
the double-precision version by about 10−7, which is consistent with the respective
precisions. Second, the whos output confirms that a single occupies half the storage
of a double of the same dimension. Third, delta, which is the difference of a single

and double, has the type single. This illustrates the rule that when single and
double arrays interact in arithmetic, the type of the result is single.

Single and double-precision numbers can be distinguished with the class function:

>> class(pi)

ans =

1×6 char array

double

>> class(single(pi))

ans =

1×6 char array

single

MATLAB is consistent in its use of these two precisions. For example, if a single-
precision computation overflows, then the resulting inf or -inf has the class single.

MATLAB also has eight integer data types: int8, int16, int32, and int64 store
signed integers of 8, 16, 32, and 64 bits, respectively, and their analogs uint8, uint16,
uint32, and uint64 store unsigned integers. One of the main uses of these data types
is for efficient storage of image data. Limited arithmetic operations are supported,
including a number of bitwise operations.

Variables can be created using eye, ones, and zeros with an extra argument:

>> E =

1×3 int8 row vector

0 0 0

>> A = 5*ones(1,3,'uint16')

A =

1×3 uint16 row vector

5 5 5

4.4 Other Data Types 45

>> whos

Name Size Bytes Class Attributes

A 1×3 6 uint16

E 1×3 3 int8

Functions of the same name as the data type convert into these storage formats,
and the range of numbers supported can be obtained with intmin and intmax:

>> int8(30.8)

ans =

int8

31

>> [intmin('int8') intmax('int8')]

ans =

1×2 int8 row vector

-128 127

>> int8(128)

ans =

int8

127

>> [intmin('uint8') intmax('uint8')]

ans =

1×2 uint8 row vector

0 255

>> [uint8(-1) uint8(256)]

ans =

1×2 uint8 row vector

0 255

As these examples show, numbers outside the range are mapped to one of the ends
of the range.

To obtain a full list of MATLAB data types issue the command doc datatypes,
and see Figure 18.1 for the interrelations between the data types.

Round numbers are always false.

— SAMUEL JOHNSON, Boswell’s Life of Johnson (1791)

Minus times minus is plus.

The reason for this we need not discuss.

— W. H. AUDEN, A Certain World (1971)

Chapter 5

Matrices

An m-by-n matrix is a two-dimensional array of numbers consisting of m rows and
n columns. Special cases are a column vector (n = 1), a row vector (m = 1), and a
scalar (m = n = 1).

Matrices are fundamental to MATLAB, and even if you are not intending to use
MATLAB for linear algebra computations you need to become familiar with matrix
generation and manipulation. In versions 3 and earlier of MATLAB there was only
one data type: the complex matrix.3 Nowadays, MATLAB has several data types
(see Chapter 18) and matrices are special cases of a multidimensional numeric array.

5.1. Matrix Generation

Matrices can be generated in several ways. Many elementary matrices can be con-
structed directly with a MATLAB function (see Table 5.1). The matrix of zeros, the
matrix of ones, and the identity matrix (which has ones on the diagonal and zeros
elsewhere) are returned by the functions zeros, ones, and eye, respectively. All have
the same syntax. For example, zeros(m,n) or zeros([m,n]) produces an m-by-n
matrix of zeros, while zeros(n) produces an n-by-n matrix. Examples:

>> zeros(2)

ans =

0 0

0 0

>> ones(2,3)

ans =

1 1 1

1 1 1

>> eye(3,2)

ans =

1 0

0 1

0 0

A common requirement is to set up an identity matrix whose dimensions match
those of a given matrix A. This can be done with eye(size(A)), where size is
the function introduced in Section 3.2. Related to size is the length function:

3Cleve Moler used to joke that “MATLAB is a strongly typed language: it only has one data type!”

47

48 Matrices

Table 5.1. Elementary matrices.

zeros Zeros array
ones Ones array
eye Identity matrix
repmat Replicate and tile array
rand Uniformly distributed random numbers
randn Normally distributed random numbers
randi Uniformly distributed random integers
linspace Linearly spaced vector
logspace Logarithmically spaced vector
meshgrid X and Y arrays for 3D plots
: Regularly spaced vector and index into matrix

length(A) is the larger of the two dimensions of A. Thus for an n-by-1 or 1-by-n
vector x, length(x) returns n.

The functions nan and inf can also generate matrices in the same way:

>> nan(2,3)

ans =

NaN NaN NaN

NaN NaN NaN

>> inf(2)

ans =

Inf Inf

Inf Inf

Depending on the computation, initializing matrix elements to NaN or Inf may be
more likely to reveal bugs in a code than initializing to zeros.

Two other very important matrix generation functions are rand and randn, which
generate matrices of independent (pseudo-)random numbers using the same syntax as
eye. The function rand produces a matrix of numbers from the uniform distribution
over the interval [0, 1]. For this distribution on an interval [a, b] the proportion of
numbers with 0 < a < b < 1 is b − a. To produce uniformly distributed numbers on
[a, b] use a + rand*(b-1).

The function randn produces a matrix of numbers from the standard normal (0,1)
distribution (mean 0, variance 1). Called without any arguments, both functions
produce a single random number:

>> rand

ans =

0.8147

>> rand(3)

ans =

0.9058 0.6324 0.5469

0.1270 0.0975 0.9575

0.9134 0.2785 0.9649

5.1 Matrix Generation 49

The periods of rand and randn, that is, the number of terms generated before the
sequences start to repeat, are 219937 − 1 ≈ 106002.

In carrying out experiments with random numbers it is often important to be able
to regenerate the same numbers on a subsequent occasion. The numbers produced
by a call to rand and randn depend on the state of the generator. The generator
can be seeded with the command rng(j) for a nonnegative integer j, after which a
predictable sequence of random numbers is generated. For j = 0 the generator is set
to the state it has when MATLAB starts. Typing rng on its own produces

>> rng

ans =

Type: 'twister'

Seed: 0

State: [625×1 uint32]

MATLAB contains seven different random number generator algorithms, and the
default is the Mersenne twister. Three of those supported are legacy generators
provided for backward compatibility (over the years the generator has been changed
several times). See doc rng for details of the generators. For most purposes, the
default generator is entirely adequate.

Reproducible Research
It is good practice to make your computational experiments reproducible,
in the sense that you, or someone else working independently, can repeat
the experiment and reproduce the results. One aspect of this is recording
which codes you used and how they were run. If your computations involve
random numbers then it is essential to set the state of the generator using
rng at the start of the experiment, so that the same random numbers are
generated on each run (we have done so throughout this book).

In reporting results you need to state the version of MATLAB used (you
can find it out by typing ver) and list any toolboxes that were used. Com-
putational results may depend to a greater or lesser extent on the release,
since as time passes MATLAB functions are improved, the underlying li-
braries that MATLAB uses are updated, and the compiler used to generate
MATLAB is itself updated. It may not be obvious whether you have used
any of the toolboxes available on your system; see Section 16.9 for some
ways to determine what functions are used in a particular computation.

For an overview of the many issues in reproducible research see [37].

The function randi generates matrices with random integer entries: randi(imax,n)
generates an n-by-n matrix with entries drawn from the uniform distribution on
1:imax.

>> randi(25,4)

ans =

4 21 20 22

25 4 24 24

24 11 17 17

13 23 1 19

Prior to Release 2011a of MATLAB, a different syntax was used for setting the
state of the random number generator, namely rand('state',s), or randn('seed',s)

50 Matrices

in much earlier versions. If these commands are used now they cause legacy genera-
tors to be activated and a warning message is generated if rng is subsequently called.
Type rng default to escape legacy mode.

Matrices can be built explicitly using the square bracket notation. For example,
a 3-by-3 matrix comprising the first nine primes can be set up with the command

>> A = [2 3 5

7 11 13

17 19 23]

A =

2 3 5

7 11 13

17 19 23

The end of a row can be specified by a semicolon instead of a carriage return, so a
more compact command with the same effect is

>> A = [2 3 5; 7 11 13; 17 19 23]

Within a row, elements can be separated by spaces or by commas. In the former case,
if numbers are specified with a plus or minus sign take care not to leave a space after
the sign, else MATLAB will interpret the sign as an addition or subtraction operator.
To illustrate with vectors:

>> v = [-1 2 -3 4]

v =

-1 2 -3 4

>> w = [-1, 2, -3, 4]

w =

-1 2 -3 4

>> x = [-1 2 - 3 4]

x =

-1 -1 4

Matrices can be constructed in block form. With B defined by B = [1 2; 3 4], we
may create

>> C = [B zeros(2)

ones(2) eye(2)]

C =

1 2 0 0

3 4 0 0

1 1 1 0

1 1 0 1

Block diagonal matrices can be defined using the function blkdiag, which is easier
than using the square bracket notation. Example:

>> A = blkdiag(2*eye(2),ones(2))

A =

2 0 0 0

5.1 Matrix Generation 51

0 2 0 0

0 0 1 1

0 0 1 1

Useful for constructing “tiled” block matrices is repmat: repmat(A,m,n) creates
a block m-by-n matrix in which each block is a copy of A. If m is omitted, it defaults
to n. Example:

>> A = repmat(eye(2),2)

A =

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

MATLAB provides a number of special matrices, which are listed in Table 5.2.
These matrices have interesting properties that make them useful for constructing
examples and for testing algorithms. One of the most famous is the Hilbert matrix,
whose (i, j) element is 1/(i+ j− 1). The matrix is generated by hilb, and its inverse
(which has integer entries) by invhilb. The function magic generates magic squares,
which are fun to investigate using MATLAB [124]. The toeplitz function constructs
a Toeplitz matrix: one for which the elements down each diagonal are constant.
Similarly, hankel constructs a Hankel matrix: one for which the elements down each
antidiagonal are constant. To construct a Toeplitz matrix, specify the first column
and the first row:

>> toeplitz([1 0 -1 -2],[1 2 4 8])

ans =

1 2 4 8

0 1 2 4

-1 0 1 2

-2 -1 0 1

For a Hankel matrix it is the first column and the last row that are specified:

>> hankel([3 1 2 0],[0 -1 -2 -3])

ans =

3 1 2 0

1 2 0 -1

2 0 -1 -2

0 -1 -2 -3

The function gallery provides access to a large collection of test matrices created
by N. J. Higham [69] (an earlier version of the collection was published in [68]).
Table 5.3 lists the matrices; more information is obtained by typing help private\

matrix name. As indicated in the table, some of the matrices in gallery are returned
in the sparse data type (see Chapter 15). Example:

>> help private/moler

moler Moler matrix (symmetric positive definite).

A = GALLERY('moler',N,ALPHA) is the symmetric positive definite

N-by-N matrix U'*U, where U = GALLERY('TRIW',N,ALPHA).

52 Matrices

Table 5.2. Special matrices.

compan Companion matrix
gallery Large collection of test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse Hilbert matrix
magic Magic square
pascal Pascal matrix
rosser Classic symmetric eigenvalue test problem
spiral Matrix of integers arranged in spiral pattern
toeplitz Toeplitz matrix
vander Vandermonde matrix
wilkinson Wilkinson’s eigenvalue test matrix

For the default ALPHA = -1, A(i,j) = MIN(i,j)-2, and A(i,i) = i.

One of the eigenvalues of A is small.

>> A = gallery('moler',5)

A =

1 -1 -1 -1 -1

-1 2 0 0 0

-1 0 3 1 1

-1 0 1 4 2

-1 0 1 2 5

By default, the matrices produce by gallery are of type double. If you append an
input argument 'single', or provide a numeric parameter (other than the dimension)
of type single, then a matrix of type single is produced. Example:

>> A = gallery('moler',4,single(1)), class(A)

A =

1 1 1 1

1 2 2 2

1 2 3 3

1 2 3 4

ans =

single

Table 5.4 lists matrices from Tables 5.2 and 5.3 having certain properties; in most
cases the matrix has the property for the default arguments, but in some cases, such
as for gallery’s randsvd, the arguments must be suitably chosen. For definitions of
these properties see Chapter 9 and the textbooks listed at the start of that chapter.

Another way to generate a matrix is to load it from a file using the load command
(see p. 31).

5.1 Matrix Generation 53

Table 5.3. Matrices available through gallery.

binomial Binomial matrix—multiple of involutory matrix
cauchy Cauchy matrix
chebspec Chebyshev spectral differentiation matrix
chebvand Vandermonde-like matrix for the Chebyshev polynomials
chow Chow matrix—a singular Toeplitz lower Hessenberg matrix
circul Circulant matrix
clement Clement matrix—tridiagonal with zero diagonal entries
compar Comparison matrices
condex Counterexamples to matrix condition number estimators
cycol Matrix whose columns repeat cyclically
dorr Dorr matrix—diagonally dominant, ill-conditioned, tridiagonal

(one or three output arguments, sparse)
dramadah Matrix of 1s and 0s whose inverse has large integer entries
fiedler Fiedler matrix—symmetric
forsythe Forsythe matrix—a perturbed Jordan block
frank Frank matrix—ill-conditioned eigenvalues
gcdmat GCD matrix
gearmat Gear matrix
grcar Grcar matrix—a Toeplitz matrix with sensitive eigenvalues
hanowa Matrix whose eigenvalues lie on a vertical line in the complex

plane
house Householder matrix (three output arguments)
integerdata Array of arbitrary data from uniform distribution on specified

range of integers
invhess Inverse of an upper Hessenberg matrix
invol Involutory matrix
ipjfact Hankel matrix with factorial elements (two output arguments)
jordbloc Jordan block matrix
kahan Kahan matrix—upper trapezoidal
kms Kac–Murdock–Szego Toeplitz matrix
krylov Krylov matrix
lauchli Läuchli matrix—rectangular
lehmer Lehmer matrix—symmetric positive definite
leslie Leslie matrix
lesp Tridiagonal matrix with real, sensitive eigenvalues
lotkin Lotkin matrix
minij Symmetric positive definite matrix min(i, j)
moler Moler matrix—symmetric positive definite
neumann Singular matrix from the discrete Neumann problem (sparse)
normaldata Array of arbitrary data from standard normal distribution
orthog Orthogonal and nearly orthogonal matrices
parter Parter matrix—a Toeplitz matrix with singular values near π
pei Pei matrix
poisson Block tridiagonal matrix from Poisson’s equation (sparse)
prolate Prolate matrix—symmetric, ill-conditioned Toeplitz matrix
qmult Premultiply matrix by random orthogonal matrix

54 Matrices

Table 5.3. (continued)

randcolu Random matrix with normalized columns and specified singular
values

randcorr Random correlation matrix with specified eigenvalues
randhess Random, orthogonal upper Hessenberg matrix
randjorth Random J-orthogonal matrix
rando Random matrix with elements −1, 0, or 1
randsvd Random matrix with preassigned singular values and specified

bandwidth
redheff Matrix of 0s and 1s of Redheffer
riemann Matrix associated with the Riemann hypothesis
ris Ris matrix—a symmetric Hankel matrix
sampling Nonsymmetric matrix with integer, ill-conditioned eigenvalues
smoke Smoke matrix—complex, with a “smoke ring” pseudospectrum
toeppd Symmetric positive definite Toeplitz matrix
toeppen Pentadiagonal Toeplitz matrix (sparse)
tridiag Tridiagonal matrix (sparse)
triw Upper triangular matrix discussed by Wilkinson and others
uniformdata Array of arbitrary data from standard uniform distribution
wathen Wathen matrix—a finite-element matrix (sparse, random entries)
wilk Various specific matrices devised/discussed by Wilkinson (two

output arguments)
gallery(3) Badly conditioned 3-by-3 matrix
gallery(5) Interesting eigenvalue problem

5.2. Subscripting and the Colon Notation

To enable access and assignment to submatrices MATLAB has a powerful notation
based on the colon character. The colon is used to define vectors that can act as
subscripts. For integers i and j, i:j denotes the row vector of integers from i to j

(in steps of 1). A nonunit step (or stride) s is specified as i:s:j. This notation is
valid even for noninteger i, j, and s. Examples:

>> 1:5

ans =

1 2 3 4 5

>> 4:-1:-2

ans =

4 3 2 1 0 -1 -2

>> 0:.75:3

ans =

0 0.7500 1.5000 2.2500 3.0000

Single elements of a matrix are accessed as A(i,j), where i ≥ 1 and j ≥ 1 (zero
or negative subscripts are not supported in MATLAB). The submatrix comprising
the intersection of rows p to q and columns r to s is denoted by A(p:q,r:s). As

5.2 Subscripting and the Colon Notation 55

Table 5.4. Matrices classified by property. Most of the matrices listed here are accessed
through gallery.

Defective chebspec, gallery(5), gearmat, jordbloc,
triw

Hankel hilb, ipjfact, ris
Hessenberg chow, frank, grcar, randhess, randsvd
Idempotent invol

Inverse of tridiagonal matrix kms, lehmer, minij
Involutory binomial, invol, orthog, pascal
Nilpotent chebspec, gallery(5)
Normal∗ circul

Orthogonal hadamard, orthog, randhess, randsvd
Rectangular chebvand, cycol, kahan, krylov, lauchli,

rando, randsvd, triw
Symmetric indefinite clement, fiedler
Symmetric positive definite gcdmat, hilb, invhilb, ipjfact, kms, lehmer,

minij, moler, pascal, pei, poisson, prolate,
randcorr, randsvd, toeppd, tridiag, wathen

Toeplitz chow, dramadah, grcar, kms, parter, prolate,
toeppd, toeppen

Totally positive/nonnegative cauchy,† hilb, lehmer, pascal
Tridiagonal clement, dorr, lesp, randsvd, tridiag, wilk,

wilkinson

Triangular dramadah, jordbloc, kahan, pascal, triw

∗ But not symmetric or orthogonal.
† cauchy(x,y) is totally positive if 0 < x1 < · · · < xn and 0 < y1 < · · · < yn [70].

a special case, a lone colon as the row or column specifier covers all entries in that
row or column; thus A(:,j) is the jth column of A and A(i,:) is the ith row. The
keyword end used in this context denotes the last index in the specified dimension;
thus A(end,:) picks out the last row of A. In effect, a lone colon is short for 1:end.
Finally, an arbitrary submatrix can be selected by specifying the individual row and
column indices. For example, A([i j k],[p q]) produces the submatrix given by the
intersection of rows i, j, and k and columns p and q. Here are some examples, using
the matrix of primes set up above:

>> A

A =

2 3 5

7 11 13

17 19 23

>> A(2,1)

ans =

7

>> A(2:3,2:3)

56 Matrices

ans =

11 13

19 23

>> A(:,1)

ans =

2

7

17

>> A(2,:)

ans =

7 11 13

>> A(end:-1:1,end)

ans =

23

13

5

>> A([1 3],[2 3])

ans =

3 5

19 23

Zero-Based Versus One-Based Indexing
Arrays start at index 1 in MATLAB, so x(1) and A(1,1) are the first
elements of a vector x and matrix A. The same is true of Fortran, Julia,
and Pascal. Many other languages, including C, Python, and Scala, use
zero-based indexing, with indices starting at 0. If you translate from, or
compare with, code in other languages, or with pseudocode, make sure to
check which form of indexing is in effect.

A further special case is A(:), which denotes a vector comprising all the elements
of A taken down the columns from first to last:

>> B = A(:)

B =

2

7

17

3

11

19

5

13

23

When placed on the left side of an assignment statement, A(:) fills A, preserving its
shape. Using this notation, another way to define our 3-by-3 matrix of primes is

5.3 Matrix and Array Operations 57

>> A = zeros(3); A(:) = primes(23); A = A'

A =

2 3 5

7 11 13

17 19 23

The function primes returns a vector of the prime numbers less than or equal to its
argument. The transposition A = A' (see the next section) is necessary to reorder the
primes across the rows rather than down the columns.

The Colon Notation
The colon notation A(i:j,p:q) for array subscripting (or slicing) was used
in specific forms in early languages such as Algol 68. Following its intro-
duction in its most general form in MATLAB many other programming
languages have adopted it. The colon notation is also widely used as a
mathematical notation in textbooks and research papers. An early and in-
fluential example was the first edition (1983) of Golub and Van Loan’s book
Matrix Computations [53].

In one circumstance—when the right-hand side is a single element—the number
of elements in a subscripted assignment can be different on the two sides of the
assignment. In this case the scalar is “expanded” to match the number of elements
on the left:

>> A = ones(3);

>> A(2:3,2:3) = 0 % Scalar expansion.

A =

1 1 1

1 0 0

1 0 0

Related to the colon notation for generating vectors of equally spaced numbers is
the function linspace, which accepts the number of points rather than the increment:
linspace(a,b,n) generates n equally spaced points between a and b. If n is omitted
it defaults to 100. Example:

>> linspace(-1,1,9)

ans =

Columns 1 through 7

-1.0000 -0.7500 -0.5000 -0.2500 0 0.2500 0.5000

Columns 8 through 9

0.7500 1.0000

5.3. Matrix and Array Operations

For scalars a and b, the operators +, -, *, /, and ^ produce the obvious results. As
well as the usual right division operator, /, MATLAB has a left division operator, \:

58 Matrices

MATLAB notation Mathematical equivalent

Right division: a/b
a

b

Left division: a\b
b

a

For matrices, all these operations can be carried out in a matrix sense (according to
the rules of matrix algebra) or an array sense (elementwise). Table 5.5 summarizes
the syntax.

Addition and subtraction, which are identical operations in the matrix and array
senses, are defined for matrices of the same dimension. The product A*B is the result of
matrix multiplication, defined only when the number of columns of A and the number
of rows of B are the same. The backslash and the forward slash define solutions of
linear systems: A\B is a solution X of A*X = B, while A/B is a solution X of X*B = A

(see Section 9.3 for more details). Examples:

>> A = [1 2; 3 4], B = ones(2)

A =

1 2

3 4

B =

1 1

1 1

>> A+B

ans =

2 3

4 5

>> A*B

ans =

3 3

7 7

>> A\B

ans =

-1 -1

1 1

Multiplication and division in the array, or elementwise, sense are specified by pre-
ceding the operator with a period. If A and B are matrices of the same dimensions then
C = A.*B sets C(i,j) = A(i,j)*B(i,j) and C = A./B sets C(i,j) = A(i,j)/B(i,j).
The assignment C = A.\B is equivalent to C = B./A. With the same A and B as in the
previous example:

>> A.*B

ans =

1 2

3 4

>> B./A

5.3 Matrix and Array Operations 59

Table 5.5. Elementary matrix and array operations.

Operation Matrix sense Array sense
Addition + +

Subtraction - -

Multiplication * .*

Left division \ .\

Right division / ./

Exponentiation ^ .^

ans =

1.0000 0.5000

0.3333 0.2500

Exponentiation with ^ is defined as matrix powering, but the dot form exponen-
tiates elementwise. Thus if A is a square matrix then A^2 is the matrix product A*A,
but A.^2 is A with each element squared:

>> A^2, A.^2

ans =

7 10

15 22

ans =

1 4

9 16

The dot form of exponentiation allows the power to be an array when the dimensions
of the base and the power agree, or when the base is a scalar:

>> x = [1 2 3]; y = [2 3 4]; Z = [1 2; 3 4];

>> x.^y

ans =

1 8 81

>> 2.^x

ans =

2 4 8

>> 2.^Z

ans =

2 4

8 16

Matrix exponentiation is defined for all powers, not just for positive integers.
If n < 0 is an integer then A^n is defined as inv(A)^n. For noninteger p, A^p is
evaluated using the eigensystem of A; results can be incorrect or inaccurate when A

is not diagonalizable or when A has an ill-conditioned eigensystem.
The conjugate transpose of the matrix A is obtained with A'. If A is real this

is simply the transpose. The transpose without conjugation is obtained with A.'.

60 Matrices

The functional alternatives ctranspose(A) and transpose(A) are sometimes more
convenient.

For the special case of column vectors x and y, x'*y is the inner, scalar, or dot
product, which can also be obtained using the dot function as dot(x,y). The vector
or cross product of two 3-by-1 or 1-by-3 vectors (as used in mechanics) is produced
by cross. Example:

>> x = [-1 0 1]'; y = [3 4 5]';

>> x'*y

ans =

2

>> dot(x,y)

ans =

2

>> cross(x,y)

ans =

-4

8

-4

The kron function evaluates the Kronecker product of two matrices. The Kro-
necker product of an m-by-n A and p-by-q B has dimensions mp-by-nq and can be
expressed as a block m-by-n matrix with (i, j) block aijB. Example:

>> A = [1 10; -10 100]; B = [1 2 3; 4 5 6; 7 8 9];

>> kron(A,B)

ans =

1 2 3 10 20 30

4 5 6 40 50 60

7 8 9 70 80 90

-10 -20 -30 100 200 300

-40 -50 -60 400 500 600

-70 -80 -90 700 800 900

The repelem function enables a larger matrix to be formed from a given matrix
by repeating its elements:

>> repelem(A,2,3)

ans =

1 1 1 10 10 10

1 1 1 10 10 10

-10 -10 -10 100 100 100

-10 -10 -10 100 100 100

If a scalar is added to a matrix MATLAB will expand the scalar into a matrix
with all elements equal to that scalar. For example:

>> [4 3; 2 1] + 4

5.3 Matrix and Array Operations 61

ans =

8 7

6 5

>> A = [1 -1] - 6

A =

-5 -7

However, if an assignment makes sense without expansion then it will be interpreted
in that way. Thus if the previous command is followed by A = 1 then A becomes the
scalar 1, not ones(1,2).

If a matrix is multiplied or divided by a scalar, the operation is performed ele-
mentwise. For example:

>> [3 4 5; 4 5 6]/12

ans =

0.2500 0.3333 0.4167

0.3333 0.4167 0.5000

Most of the functions described in Section 4.3 can be given a matrix argument,
in which case the functions are computed elementwise. For example, here we verify
that cos2 x+ sin2 x = 1 for six random x:

>> A = randn(2,3);

>> hypot(cos(A),sin(A))

ans =

1.0000 1.0000 1.0000

1.0000 1.0000 1.0000

Functions of a matrix in the linear algebra sense are signified by names ending in
m (see Section 9.10): expm, funm, logm, sqrtm. For example, for A = [2 2; 0 2],

>> sqrt(A)

ans =

1.4142 1.4142

0 1.4142

>> sqrtm(A)

ans =

1.4142 0.7071

0 1.4142

>> ans*ans

ans =

2.0000 2.0000

0 2.0000

5.3.1. Implicit Expansion

MATLAB has a feature called implicit expansion that applies to addition, subtraction,
certain other arithmetic, relational, and logical operators, and certain mathematical

62 Matrices

functions with two input arguments. If one array argument, x say, has a unit di-
mension where the other argument has a non-unit dimension then x is (effectively)
replicated along that dimension in order that the two arrays have the same dimen-
sion; this can even result in both arguments being replicated. A special case is scalar
expansion, which we have seen already:

>> zeros(2) + 1

ans =

1 1

1 1

Here are some examples where vectors are implicitly expanded:

>> A = ones(3), b = [1 2 3]

A =

1 1 1

1 1 1

1 1 1

b =

1 2 3

>> A - b

ans =

0 -1 -2

0 -1 -2

0 -1 -2

>> A - b'

ans =

0 0 0

-1 -1 -1

-2 -2 -2

>> b - b'

ans =

0 1 2

-1 0 1

-2 -1 0

The min and max functions support implicit expansion, as exploited by the function
gallery(’minij’,...), which forms the matrix with (i, j) element min(i, j) as

a = 1:n; A = min(a,a');

Implicit expansion also works with elementwise arithmetic operators such as .*

and .\. Here, we use it to carry out multiplication by a diagonal matrix on the left
or the right, and we check the answer:

>> A = magic(4); d = [-10 -1 2 20];

>> BD = A.*d; % Or d.*A

>> DB = A.*d'; % Or d'.*A

>> [isequal(BD, A*diag(d)) isequal(DB, diag(d)*A)]

5.4 Empty Matrices 63

ans =

1×2 logical array

1 1

The .* forms execute more quickly than the expressions that require formation of
the diagonal matrix diag(d). Multiplication by the inverse of a diagonal matrix can
be performed in an analogous way, and here we can use either the left or the right
division operator:

>> B1 = d.\A; B2 = A./d; B3 = A/diag(d); norm([B1-B3, B2-B3])

ans =

0

>> B1 = d'.\A; B2 = A./d'; B3 = diag(d)\A; norm([B1-B3, B2-B3])

ans =

0

Before implicit expansion was fully implemented in MATLAB it was recommended
to use the function bsxfun (binary singleton expansion function), which provides a
fast way to carry out binary operations on two arrays with implicit expansion. For
example, the previous subtraction and the formation of BD can also be expressed as

bsxfun(@minus,b,b')

BD = bsxfun(@times,A,d);

5.4. Empty Matrices

An m-by-n matrix with one or both of m and n equal to zero is called an empty
matrix:

>> ones(0,0), zeros(3,0), rand(0,5)

ans =

[]

ans =

3×0 empty double matrix

ans =

0×5 empty double matrix

The notation [] stands for the 0-by-0 matrix. If the use of ones, zero, or rand to con-
struct an empty matrix seems arbitrary and unsatisfactory, you can use double.empty
instead:

>> double.empty(0,2)

ans =

0×2 empty double matrix

MATLAB defines operations on empty matrices by extrapolating the rules for
normal matrices to the case of a zero dimension. In particular, multiplication of an
m-by-n matrix by an n-by-p matrix to produce an m-by-p matrix remains valid when
one or more of the dimensions is zero: an empty matrix is produced, except in the
special case when only n is zero, in which case the product is an m-by-p matrix of
zeros:

64 Matrices

Table 5.6. Matrix manipulation functions.

reshape Change size
diag Diagonal matrices and diagonals of matrix
tril Extract lower triangular part
triu Extract upper triangular part
flip Flip (reverse) order of elements
fliplr Flip matrix in left/right direction
flipud Flip matrix in up/down direction
rot90 Rotate matrix 90 degrees

>> m = 0; n = 2; p = 4; A = rand(m,n); B = rand(n,p); C = A*B

C =

Empty matrix: 0-by-4

>> m = 3; n = 0; p = 4; A = rand(m,n); B = rand(n,p); C = A*B

C =

0 0 0 0

0 0 0 0

Assigning [] to a row or column is one way to delete that row or column from a
matrix:

>> A = spiral(3)

A =

7 8 9

6 1 2

5 4 3

>> A(2,:) = []

A =

7 8 9

5 4 3

In this example the same effect is achieved with A = A([1 3],:). The empty matrix
is also useful as a placeholder in argument lists, as we will see in Section 5.6.

The empty matrix is an elegant concept that can remove the need to treat edge
cases specially. See Section 24.1 for some examples.

5.5. Matrix Manipulation

Several commands are available for manipulating matrices (commands more specifi-
cally associated with linear algebra are discussed in Chapter 9); see Table 5.6.

The reshape function changes the dimensions of a matrix: reshape(A,m,n) pro-
duces an m-by-n matrix whose elements are taken columnwise from A. For example:

>> A = [1 4 9; 16 25 36], B = reshape(A,3,2)

A =

1 4 9

5.5 Matrix Manipulation 65

16 25 36

B =

1 25

16 9

4 36

The function diag deals with the diagonals of a matrix and can take a vector or
a matrix as argument. For a vector x, diag(x) is the diagonal matrix with main
diagonal x:

>> diag([1 2 3])

ans =

1 0 0

0 2 0

0 0 3

More generally, diag(x,k) puts x on the kth diagonal, where k > 0 specifies diagonals
above the main diagonal and k < 0 diagonals below the main diagonal (k = 0 gives
the main diagonal):

>> diag([1 2], 1)

ans =

0 1 0

0 0 2

0 0 0

>> diag([3 4], -2)

ans =

0 0 0 0

0 0 0 0

3 0 0 0

0 4 0 0

For a matrix A, diag(A) is the column vector comprising the main diagonal of A. To
produce a diagonal matrix with diagonal the same as that of A you must therefore
write diag(diag(A)). Analogously to the vector case, diag(A,k) produces a column
vector made up from the kth diagonal of A. Thus if

A =

2 3 5

7 11 13

17 19 23

then

>> diag(A)

ans =

2

11

23

>> diag(A,-1)

ans =

66 Matrices

7

19

Triangular parts of a matrix can be extracted using tril and triu. The lower
triangular part of A (the elements on and below the main diagonal) is specified by
tril(A) and the upper triangular part of A (the elements on and above the main
diagonal) is specified by triu(A). More generally, tril(A,k) gives the elements on
and below the kth diagonal of A, while triu(A,k) gives the elements on and above
the kth diagonal of A. With A as above:

>> tril(A)

ans =

2 0 0

7 11 0

17 19 23

>> triu(A,1)

ans =

0 3 5

0 0 13

0 0 0

>> triu(A,-1)

ans =

2 3 5

7 11 13

0 19 23

5.6. Data Analysis

Table 5.7 lists functions for basic data analysis computations. The simplest usage is
to apply these functions to vectors. For example:

>> x = [4 -8 -2 1 0]

x =

4 -8 -2 1 0

>> [min(x) max(x)]

ans =

-8 4

>> sort(x)

ans =

-8 -2 0 1 4

>> sum(x)

ans =

-5

The sort function sorts into ascending order by default. Descending order is obtained
by appending an extra argument 'descend'. For complex vectors, sort sorts by
absolute value:

5.6 Data Analysis 67

Table 5.7. Basic data analysis functions.

max Largest component
min Smallest component
mean Average or mean value
median Median value
mode Mode (most frequent value)
std Standard deviation
var Variance
sum Sum of elements
prod Product of elements
movmax, movmin Moving maximum and minimum of elements
movmean, movmedian Moving mean and median of elements
movstd, movsum Moving standard deviation and sum of elements
cummax, cummin Cumulative maximum and minimum of elements
cumsum, cumprod Cumulative sum and product of elements
diff Difference of elements
sort Sort in ascending order

>> x = [1+i -3-4i 2i 1];

>> sort(x,'descend')

ans =

-3.0000 - 4.0000i 0.0000 + 2.0000i 1.0000 + 1.0000i

1.0000 + 0.0000i

Any NaN elements are placed by sort at the high end, while max and min ignore
NaNs.

For matrices the functions are defined columnwise. Thus max and min return a
vector containing the maximum and minimum element, respectively, in each column,
sum returns a vector containing the column sums, and sort sorts the elements in each
column of the matrix into ascending order. The functions min and max can return
a second argument that specifies in which components the minimum and maximum
elements are located. For example, if

A =

0 -1 2

1 2 -4

5 -3 -4

then

>> max(A)

ans =

5 2 2

>> [m,i] = min(A)

m =

0 -3 -4

i =

1 3 2

68 Matrices

As this example shows, if there are two or more minimal elements in a column then
the index of the first is returned. The smallest element in the matrix can be found
by applying min twice in succession:

>> min(min(A))

ans =

-4

An alternative, which has the advantage that it also works for arrays of dimension
greater than 2, is

>> min(A(:))

ans =

-4

Functions max and min can be made to act row-wise via a third argument:

>> max(A,[],2)

ans =

2

2

5

The 2 in max(A,[],2) specifies the maximum over the second dimension, that is,
over the column index. The empty second argument, [], is needed because with just
two arguments max and min return the elementwise maxima and minima of the two
arguments:

>> max(A,0)

ans =

0 0 2

1 2 0

5 0 0

Functions sort and sum can also be made to act row-wise, via a second argument.
For more on sort see Section 24.3.

For complex data, max and min measure size using the absolute value, like sort.

The diff function forms differences. Applied to a vector x of length n it produces
the vector [x(2)-x(1) x(3)-x(2) ... x(n)-x(n-1)] of length n-1. Example:

>> x = (1:8).^2

x =

1 4 9 16 25 36 49 64

>> y = diff(x)

y =

3 5 7 9 11 13 15

>> z = diff(y)

z =

2 2 2 2 2 2

5.6 Data Analysis 69

In data analysis NaNs are often used to represent “missing values”: data that is
not available, which could be the result of the failure of a process being measured (see
Section 26.4 for an example). Before carrying out any floating-point computation
with the data it is necessary to remove the NaNs, because any computation involving
a NaN produces a NaN. This can be done in several ways, all using the function
isnan (see Section 6.1 for more on isnan). For example:

>> x = [2 1 NaN -1 6], y = x;

x =

2 1 NaN -1 6

>> mean(x)

ans =

NaN

>> x = x(~isnan(x)), mean(x)

x =

2 1 -1 6

ans =

2

>> y(isnan(y)) = [], mean(y)

y =

2 1 -1 6

ans =

2

70 Matrices

Handled properly,

empty arrays relieve programmers of the

nuisance of special cases at beginnings and ends of

algorithms that construct matrices recursively from submatrices.

— WILLIAM M. KAHAN (1994)

Kirk: “You did all this in a day?”

Carol: “The matrix formed in a day.

The lifeforms grew later at a substantially accelerated rate.”

— Star Trek III: The Search For Spock (Stardate 8130.4)

I start by looking at a 2 by 2 matrix.

Sometimes I look at a 4 by 4 matrix.

That’s when things get out of control and too hard.

Usually 2 by 2 or 3 by 3 is enough, and I look at them,

and I compute with them, and I try to guess the facts.

— PAUL R. HALMOS, in Paul Halmos: Celebrating 50 Years of Mathematics (1991)

For the sake of an easy extension of matrix operations,

we shall introduce one empty matrix of each size

Multiplication of the empty 0 ×m-matrix with any m × n-matrix

is defined to yield the empty 0 × n-matrix.

The product of the empty m × 0-matrix

with the empty 0 × n-matrix, however,

is defined to be a nonempty matrix,

namely the zero matrix of size m × n.

— JOSEF STOER and CHRISTOPH WITZGALL,

Convexity and Optimization in Finite Dimensions I (1970)

Chapter 6

Operators and Flow Control

6.1. Relational and Logical Operators

MATLAB has a logical data type, with the possible values 1, representing true, and 0,
representing false. Logicals are produced by relational and logical operators/functions
and by the functions true and false:

>> a = true

a =

logical

1

>> b = false

b =

logical

0

>> c = 1

c =

1

>> whos

Name Size Bytes Class Attributes

a 1×1 1 logical

b 1×1 1 logical

c 1×1 8 double

As this example shows, logicals occupy one byte, rather than the eight bytes needed
by a double.

The relational operators in MATLAB are

== equal to
~= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

Note that a single = denotes assignment and never a test for equality in MATLAB.
Comparisons between scalars produce logical 1 if the relation is true and logical

0 if it is false. Comparisons are also defined between matrices of the same dimension

71

72 Operators and Flow Control

and between a matrix and a scalar, the result being a matrix of logicals in both cases.
For matrix–matrix comparisons corresponding pairs of elements are compared, while
for matrix–scalar comparisons the scalar is compared with each matrix element. For
example:

>> A = [1 2; 3 4]; B = 2*ones(2);

>> A == B

ans =

2×2 logical array

0 1

0 0

>> A > 2

ans =

2×2 logical array

0 0

1 1

To test whether arrays A and B are equal, that is, of the same size with identical
elements, the expression isequal(A,B) can be used:

>> isequal(A,B)

ans =

logical

0

The function isequal is one of many useful logical functions whose names begin with
is, a selection of which is listed in Table 6.1. See also Table 9.1 for matrix-oriented
is functions, and for a full list type doc is*. For example, isinf(A) returns a logical
array of the same size as A containing true where the elements of A are plus or minus
inf and false where they are not:

>> A = [1 inf; -inf NaN];

>> isinf(A)

ans =

2×2 logical array

0 1

1 0

The function isnan is particularly important because the test x == NaN always pro-
duces the result 0 (false), even if x is a NaN! (A NaN is defined to compare as unequal
and unordered with everything.)

Note that an array can be real in the mathematical sense but not real as reported
by isreal. For isreal(A) is true if A has no imaginary part. Mathematically, A
is real if every component has zero imaginary part. How a mathematically real A is
formed can determine whether it has an imaginary part or not in MATLAB. The
distinction can be seen as follows:

>> a = 1;

>> b = complex(1,0);

>> c = 1 + 0i;

6.1 Relational and Logical Operators 73

Table 6.1. Selected logical is* functions.

ischar Test for char array
isstring Test for string array
isempty Test for empty array
isequal Test if arrays are equal
isequaln Test if arrays are equal, treating NaNs as equal
isfinite Detect finite array elements
isfloat Test for floating-point array (single or double)
isinf Detect infinite array elements
isinteger Test for integer array
islogical Test for logical array
isnan Detect NaN array elements
isnumeric Test for numeric array (integer or floating point)
isreal Test for real array
issorted Test for sorted vector
isscalar Test for scalar
iscolumn Test for column vector
isrow Test for row vector
isvector Test for vector
ismatrix Test for matrix
issparse Test for sparse matrix

>> [a b c]

ans =

1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i

>> whos a b c

Name Size Bytes Class Attributes

a 1×1 8 double

b 1×1 16 double complex

c 1×1 8 double

>> [isreal(a), isreal(b), isreal(c)]

ans =

1×3 logical array

1 0 1

The logical operators in MATLAB are shown in Table 6.2. Like the relational
operators, the &, |, and ~ operators produce matrices of logical zeros and ones when
one of the arguments is a matrix. When applied to a vector, the all function returns
1 if all the elements of the vector are nonzero and 0 otherwise. The any function is
defined in the same way, with “any” replacing “all”. Examples:

>> x = [-1 1 1]; y = [1 2 -3];

>> x>0 & y>0

74 Operators and Flow Control

Table 6.2. Logical operators.

& logical and
&& logical and (for scalars) with short-circuiting
| logical or
|| logical or (for scalars) with short-circuiting
~ logical not
xor logical exclusive or
all true if all elements of vector are nonzero
any true if any element of vector is nonzero

ans =

0 1 0

>> x>0 | y>0

ans =

1×3 logical array

1 1 1

>> xor(x>0,y>0)

ans =

1×3 logical array

1 0 1

>> any(x>0)

ans =

logical

1

>> all(x>0)

ans =

logical

0

Note that xor must be called as a function: xor(a,b). The and, or, and not operators
and the relational operators can also be called in functional form as and(a,b), . . . ,
eq(a,b), . . . (see help ops).

The operators && and || are special in two ways. First, they work with scalar
expressions only, and should be used in preference to & and | for scalar expressions.
Continuing the previous example, compare

>> any(x>0) && any(y>0)

ans =

logical

1

>> x>0 && y>0

Operands to the || and && operators must be convertible to

logical scalar values.

6.1 Relational and Logical Operators 75

The second feature of these “double barreled” operators is that they short-circuit the
evaluation of the logical expressions, where possible. In the compound expression
expr1 && expr2, if expr1 evaluates to false then expr2 is not evaluated. Similarly,
in expr1 || expr2, if expr1 evaluates to true then expr2 is not evaluated. Short-
circuiting saves computation, but it also enables warnings and errors to be avoided.
For example, a statement beginning

if (m >=0 && m <= 1) && ellipj(u,m) < 0.5

avoids calling ellipj with an illegal value for the second argument.
The precedence of arithmetic, relational, and logical operators is summarized in

Table 6.3 (which is based on the information provided by help precedence). For
operators of equal precedence MATLAB evaluates from left to right. Precedence can
be overridden by using parentheses. Note, in particular, that logical and has higher
precedence than logical or, so a logical expression of the form

x | y & z

is equivalent to

x | (y & z)

It is good practice to insert parentheses to make the intention completely clear. For
example, the test

if 0 < x < 1, disp('Test passed'), end

looks as if it is testing whether x lies on the interval (0, 1). However, rewriting the
test in the equivalent form

if (0 < x) < 1, disp('Test passed;), end

and noting that (0 < x) evaluates to 0 or 1 makes it clear that the test is passed when
x is less than or equal to 0.

For matrices, all returns a row vector containing the result of all applied to
each column. Therefore all(all(A==B)) is another way of testing equality of the
matrices A and B. The any function works in the corresponding way. Thus, for
example, any(any(A==B)) has the value 1 if A and B have any equal elements and 0
otherwise. Alternatives are all(A(:)==B(:)) and any(A(:)==B(:)).

The find command returns the indices corresponding to the nonzero elements of
a vector. For example,

>> x = [-3 1 0 -inf 0];

>> f = find(x)

f =

1 2 4

The result of find can then be used to extract just those elements of the vector:

>> x(f)

ans =

-3 1 -Inf

With x as above, we can use find to obtain the finite elements of x,

76 Operators and Flow Control

Table 6.3. Operator precedence.

Precedence level Operator
1 (highest) Parentheses ()
2 Transpose (.'), power (.^), complex conjugate

transpose ('), matrix power (^)
3 Power or matrix power with unary minus (.^-, ^-),

unary plus (.^+, ^+), or logical negation (.^~, ^~)
4 Unary plus (+), unary minus (-), logical negation (~)
5 Multiplication (.*), right division (./), left division

(.\), matrix multiplication (*), matrix right division
(/), matrix left division (\)

6 Addition (+), subtraction (-)
7 Colon operator (:)
8 Less than (<), less than or equal to (<=), greater

than (>), greater than or equal to (>=), equal to (==),
not equal to (~=)

9 Logical and (&)
10 Logical or (|)
11 Logical short-circuit and (&&)
12 (lowest) Logical short-circuit or (||)

>> x(find(isfinite(x)))

ans =

-3 1 0 0

and to replace negative components of x by zero:

>> x(find(x < 0)) = 0

x =

0 1 0 0 0

When find is applied to a matrix A, the index vector corresponds to A regarded
as a vector of the columns stacked one on top of the other (that is, A(:)), and this
vector can be used to index into A. In the following example we use find to set to
zero those elements of A that are less than the corresponding elements of B:

>> A = [4 2 16; 12 4 3], B = [12 3 1; 10 -1 7]

A =

4 2 16

12 4 3

B =

12 3 1

10 -1 7

>> f = find(A<B)

f =

1

3

6.1 Relational and Logical Operators 77

6

>> A(f) = 0

A =

0 0 16

12 4 0

An alternative usage of find for matrices is [i,j] = find(A), which returns vectors
i and j containing the row and column indices of the nonzero elements.

The results of the MATLAB logical operators and logical functions are logical
arrays of 0s and 1s. Logical arrays can also be created by applying the function
logical to a numeric array; nonzero values other than 1 that are converted to 1
result in a warning message. Logical arrays and numeric arrays can both be used
for subscripting, but with an important difference: logical arrays pick out elements
where the subscript is true, whereas numeric arrays pick out elements indexed by the
subscript. An example should make this distinction clear:

>> clear

>> y = [1 2 0 -3 0]

y =

1 2 0 -3 0

>> i1 = (y ~= 0)

i1 =

1×5 logical array

1 1 0 1 0

>> i2 = [1 1 0 1 0]

i2 =

1 1 0 1 0

>> y(i1)

ans =

1 2 -3

>> y(i2)

Subscript indices must either be real positive integers or logicals.

>> whos i1 i2

Name Size Bytes Class Attributes

i1 1×5 5 logical

i2 1×5 40 double

>> isequal(i1,i2)

ans =

logical

1

>> i3 = [1 2 4]; y(i3)

ans =

78 Operators and Flow Control

1 2 -3

Although the numeric array i2 has the same elements as the logical array i1 (and
compares as equal with it), only i1 can be used for subscripting. To achieve the
required subscripting effect with a numerical array, i3 must be used.

A call to find can sometimes be avoided when its argument is a logical array. In
our example on p. 75, x(find(isfinite(x))) can be replaced by x(isfinite(x)).

Addition and multiplication can be done on logicals, and they can be used in
arithmetic expressions containing doubles. The result is always a double:

>> a = true; b = false; c = 2*a + b, class(c)

c =

2

ans =

double

However, many other arithmetic operations fail:

>> b/a

Undefined operator '/' for input arguments of type 'logical'.

6.2. Flow Control

MATLAB has five flow control structures: the if statement, the for loop, the while

loop, the switch statement, and the try statement. The simplest form of the if

statement is

if expression
statements

end

where the statements are executed if the elements of expression are all nonzero. For
example, the following code swaps x and y if x is greater than y:

if x > y

temp = y;

y = x;

x = temp;

end

When an if statement is followed on its line by further statements, a comma is needed
to separate the if from the next statement:

if x > 0, x = sqrt(x); end

Statements to be executed only if expression is false can be placed after else, as
in the example

e = exp(1);

if 2^e > e^2

disp('2^e is bigger')

else

disp('e^2 is bigger')

end

6.2 Flow Control 79

Finally, one or more further tests can be added with elseif (note that there must
be no space between else and if):

if isnan(x)

disp('Not a Number')

elseif isinf(x)

disp('Plus or minus infinity')

else

disp('A ''regular'' floating-point number')

end

In the third disp, '' prints as a single quote '.
The for loop is one of the most useful MATLAB constructs, although, as discussed

in Section 23.2, experienced programmers who are concerned with producing compact
and fast code try to avoid for loops wherever possible. The syntax is

for variable = expression
statements

end

Usually, expression is a vector of the form i:s:j (see Section 5.2). The statements
are executed with variable equal to each element of expression in turn. For example,
the sum of the first 25 terms of the harmonic series 1/i is computed by

>> s = 0;

>> for i = 1:25, s = s + 1/i; end, s

s =

3.8160

Another way to define expression is using the square bracket notation:

>> for x = [pi/6 pi/4 pi/3], disp([x, sin(x)]), end

0.5236 0.5000

0.7854 0.7071

1.0472 0.8660

Multiple for loops can of course be nested, in which case indentation helps to
improve the readability. The following code forms the 5-by-5 symmetric matrix A

with (i, j) element i/j for j ≥ i:

n = 5; A = eye(n);

for j = 2:n

for i = 1:j-1

A(i,j) = i/j;

A(j,i) = i/j;

end

end

The expression in the for loop can be a matrix, in which case variable is assigned
the columns of expression from first to last. For example, to set x to each of the unit
vectors in turn, we can write for x = eye(n), ..., end.

80 Operators and Flow Control

The while loop has the form

while expression
statements

end

The statements are executed as long as expression is true. The following example
approximates the smallest nonzero floating-point number:

>> x = 1; while x > 0, xmin = x; x = x/2; end, xmin

xmin =

4.9407e-324

A while loop can be terminated with the break statement, which passes control to
the first statement after the corresponding end. An infinite loop can be constructed
using while 1, ..., end, which is useful when it is not convenient to put the exit test
at the top of the loop. (Note that, unlike some other languages, MATLAB does not
have a “repeat-until” loop.) We can rewrite the previous example less concisely as

x = 1;

while 1

xmin = x;

x = x/2;

if x == 0, break, end

end

xmin

The break statement can also be used to exit a for loop. In a nested loop a break

exits to the loop at the next higher level.
The continue statement causes execution of a for or while loop to pass immedi-

ately to the next iteration of the loop, skipping the remaining statements in the loop.
As a trivial example,

for i=1:10

if i < 5, continue, end

disp(i)

end

displays the integers 5 to 10. In more complicated loops the continue statement can
be useful to avoid long-bodied if statements.

The switch construct consists of “switch expression” followed by a list of “case
expression statements”, optionally ending with “otherwise statements” and followed
by end. The switch expression is evaluated and the statements following the first
matching case expression are executed. If none of the cases produces a match then
the statements following otherwise are executed. The next example evaluates the
p-norm of a vector x (i.e., norm(x,p)) for just three values of p:

switch p

case 1

y = sum(abs(x));

case 2

y = sqrt(x'*x);

case inf

6.2 Flow Control 81

y = max(abs(x));

otherwise

error('p must be 1, 2 or inf.')

end

(The error function is described in Section 14.1.) The expression following case can
be a list of values enclosed in parentheses (a cell array—see Section 18.7). The switch
expression then matches any value in the list:

x = input('Enter a real number: ');

switch x

case {inf,-inf}

disp('Plus or minus infinity')

case 0

disp('Zero')

otherwise

disp('Nonzero and finite')

end

C programmers should note that the MATLAB switch construct behaves differently
from that in C: once a MATLAB case group expression has been matched and its
statements executed, control is passed to the first statement after the switch, with
no need for break statements.

The final control structure is the try statement, which has the form

try

statements
catch exception

statements
end

The statements after the try are executed and if an error occurs execution jumps
immediately to the statements after the catch.

Suppose that within a program you want to read in an image file image.jpg, and
that that image does not exist in the current directory. A statement

imread image.jpg

generates an error

Error using imread (line 349)

File "image.jpg" does not exist.

and execution terminates. However, we may want execution of our program to con-
tinue. In this circumstance the code

try

imread image.jpg

catch

disp('Image could not be read')

end

82 Operators and Flow Control

displays Image could not be read and execution continues after the end. Note that
an alternative in this example is to check the existence of the file using exist (see
Section 7.3) before attempting to load it, though this does not guard against a file of
the expected name having the wrong format.

The exception term allows the action taken in the catch section to depend on the
nature of the error, based on the information in the object in question. See doc try

for examples.

Kirk: “Well, Spock, here we are.

Thanks to your restored memory, a little bit of good luck,

we’re walking the streets of San Francicso,

looking for a couple of humpback whales.

How do you propose to solve this minor problem?”

Spock: “Simple logic will suffice.”

— Star Trek IV: The Voyage Home (Stardate 8390)

Things equally high on the pecking order get evaluated from left to right.

When in doubt, throw in some parentheses and be sure.

Only use good quality parentheses with nice round sides.

— ROGER EMANUEL KAUFMAN, A FORTRAN Coloring Book (1978)

Chapter 7

Program Files

7.1. Scripts and Functions

Although you can do many useful computations working entirely at the MATLAB
command line, sooner or later you will need to write MATLAB programs: the equiv-
alents of programs, functions, subroutines, and procedures in other programming
languages. Collecting together a sequence of commands into a program opens up
many possibilities, including

• experimenting with an algorithm by editing a file, rather than retyping a long
list of commands,

• making a permanent record of a numerical experiment,

• building up utilities that can be reused at a later date,

• exchanging programs with others.

Many useful programs that have been written by enthusiasts can be found online, for
example in File Exchange at MATLAB Central.

MATLAB programs are contained in program files, of which there are four types.

Scripts have no input or output arguments and operate on variables in the workspace.

Live scripts contain both MATLAB commands and the output that they produce,
and are created and viewed in the Live Editor. They are described in Sec-
tion 16.7.

Functions contain a function definition line and can accept input arguments and
return output arguments, and their internal variables are local to the function
(unless declared global).

Classes contain the definition of a class and the methods defined on it. They are
discussed in Chapter 19.

Scripts, functions, and classes have a .m extension, while live scripts have a .mlx

extension.
A script enables you to store a sequence of commands that are to be used repeat-

edly or will be needed at some future time. A simple example of a script, marks.m,
was given in Section 2.2. As another example we describe a script for playing “eigen-
value roulette” [43], which is based on counting how many eigenvalues of a random
real matrix are real. If the matrix A is real and of dimension 8 then the number of
real eigenvalues is 0, 2, 4, 6, or 8 (the number must be even, since nonreal eigenvalues
appear in complex conjugate pairs). The short script

83

84 Program Files

Listing 7.1. Script rouldist.

%ROULDIST Empirical distribution of number of real eigenvalues.

k = 1000;

wheel = zeros(k,1);

for i = 1:k

A = randn(8);

% Count number of eigenvalues with imag. part < tolerance.

wheel(i) = sum(abs(imag(eig(A)))<.0001);

end

histogram(wheel,[0 2 4 6 8]);

%SPIN

% Counts number of real eigenvalues of random matrix.

A = randn(8); sum(abs(imag(eig(A))) < 0.0001)

creates a random normally distributed 8-by-8 matrix and counts how many eigenvalues
have imaginary parts with absolute value less than the (somewhat arbitrary) threshold
10−4. The first two lines of this script begin with the % symbol and hence are comment
lines. Whenever MATLAB encounters a % it ignores the remainder of the line. This
allows you to insert text that makes the script easier for humans to understand.
Assuming this script exists as a file spin.m, typing spin is equivalent to typing the
two commands A = randn(8); and sum(abs(imag(eig(A))) < 0.0001). This “spins
the roulette wheel,” producing one of the five answers 0, 2, 4, 6, and 8. Each call to
spin produces a different random matrix and hence may give a different answer:

>> spin

ans =

2

>> spin

ans =

4

To get an idea of the probability of each of the five outcomes you can run the script
rouldist in Listing 7.1. It generates 1000 random matrices and plots a histogram of
the distribution of the number of real eigenvalues. Figure 7.1 shows a possible result.
(The exact probabilities are known and are given in [43], [44].) Note that to make
rouldist more readable we have used spaces to indent the for loop and inserted a
blank line before the first command.

Functions enable you to extend the MATLAB language by writing your own func-
tions that accept and return arguments. They can be used in exactly the same way
as existing MATLAB functions such as sin, eye, size, etc.

Listing 7.2 shows a simple function that evaluates the largest element in absolute
value of a matrix. This example illustrates a number of features. The first line
begins with the keyword function followed by the output argument, y, and the =

symbol. On the right of = comes the function name, maxentry, followed by the input
argument, A, within parentheses. (In general there can be any number of input and

7.1 Scripts and Functions 85

Figure 7.1. Histogram produced by rouldist.

output arguments.) The function name must be the same as the name of the .m file
in which the function is stored—in this case the file must be named maxentry.m.

The second line of a function file is called the H1 (help 1) line. It should be a
comment line of a special form: a line beginning with a % character, followed without
any space by the function name in capital letters, followed by one or more spaces and
then a brief description. The description should begin with a capital letter, end with
a period, and omit the words “the” and “a”. All the comment lines from the first
comment line up to the first noncomment line (usually a blank line, for readability of
the source code) are displayed when help function_name is typed. Therefore these
lines should describe the function and its arguments. It is conventional to capitalize
function names in these comment lines. For the maxentry.m example, we have

>> help maxentry

maxentry Largest absolute value of matrix entries.

maxentry(A) is the maximum of the absolute values

of the entries of A.

Note that MATLAB converts the function name to lowercase and it is displayed in
bold in the Command Window.

We strongly recommend documenting all your function files in this way, however
short they may be. It is often useful to record in comment lines the date when the
function was first written and to note any subsequent changes that have been made.
The help command works in a similar manner on script files, displaying the initial
sequence of comment lines.

The function maxentry is called just like any other MATLAB function:

>> maxentry(1:10)

ans =

10

86 Program Files

Listing 7.2. Function maxentry.

function y = maxentry(A)

%MAXENTRY Largest absolute value of matrix entries.

% MAXENTRY(A) is the maximum of the absolute values

% of the entries of A.

y = max(max(abs(A)));

>> mx = maxentry(magic(4))

mx =

16

The function flogist shown in Listing 7.3 illustrates the use of multiple input
and output arguments. This function evaluates the scalar logistic function x(1− ax)
and its derivative with respect to x. The two output arguments f and fprime are
enclosed in square brackets. When calling a function with multiple input or output
arguments it is not necessary to request all the output arguments, but arguments
must be dropped starting at the end of the list. If more than one output argument
is requested the arguments must be listed within square brackets. Examples of usage
are

>> f = flogist(2,.1)

f =

1.6000

>> [f,fprime] = flogist(2,.1)

f =

1.6000

fprime =

0.6000

A technical point of note in function flogist is that array multiplication (.*) is used
in the statement f = x.*(1 - a*x). So, if a vector or matrix is supplied for x, the
function is evaluated at each element simultaneously:

>> flogist(1:4,2)

ans =

-1 -6 -15 -28

Another function using array multiplication is cheby in Listing 7.4, which is used
in Chapter 17 to produce Figure 17.9. The kth Chebyshev polynomial, Tk(x), can be
defined by the recurrence

Tk(x) = 2xTk−1(x)− Tk−2(x), for k ≥ 2,

with T0(x) = 1 and T1(x) = x. The function cheby accepts a vector x and an integer
p and returns a matrix Y whose ith row gives the values of T0(x), T1(x), . . . , Tp−1(x)
at x = x(i).

7.1 Scripts and Functions 87

Listing 7.3. Function flogist.

function [f,fprime] = flogist(x,a)

%FLOGIST Logistic function and its derivative.

% [F,FPRIME] = FLOGIST(x,a) evaluates the logistic

% function F(x) = x.*(1 - a*x) and its derivative FPRIME

% at the matrix argument x, where a is a scalar parameter.

f = x.*(1 - a*x);

fprime = 1 - 2*a*x;

Listing 7.4. Function cheby.

function Y = cheby(x,p)

%CHEBY Chebyshev polynomials.

% Y = CHEBY(x,p) evaluates the first p Chebyshev polynomials

% at the vector x. The k'th column of Y contains the

% Chebyshev polynomial of degree k-1 evaluated at x.

Y = ones(length(x),p);

x = x(:); % Ensure x is a column vector.

if p == 1, return, end

Y(:,2) = x;

for k = 3:p

Y(:,k) = 2*x.*Y(:,k-1) - Y(:,k-2);

end

88 Program Files

Note that cheby uses the return command, which causes an immediate return
from the function. It is not necessary (or usual) to put a return statement at the
end of a function or script, unlike in some other programming languages.

A more complicated function is sqrtn, shown in Listing 7.5. Given a > 0, it
implements the Newton iteration for

√
a,

xk+1 =
1

2

(
xk +

a

xk

)
, x1 = a,

printing the progress of the iteration. Output is controlled by the fprintf command,
which is described in Section 13.2. Examples of usage are

>> [x,iter] = sqrtn(2)

k x_k rel. change

1: 1.5000000000000000e+00 3.33e-01

2: 1.4166666666666665e+00 5.88e-02

3: 1.4142156862745097e+00 1.73e-03

4: 1.4142135623746899e+00 1.50e-06

5: 1.4142135623730949e+00 1.13e-12

6: 1.4142135623730949e+00 0.00e+00

x =

1.4142

iter =

6

>> x = sqrtn(2,1e-4);

k x_k rel. change

1: 1.5000000000000000e+00 3.33e-01

2: 1.4166666666666665e+00 5.88e-02

3: 1.4142156862745097e+00 1.73e-03

4: 1.4142135623746899e+00 1.50e-06

This function illustrates the use of optional input arguments. The function nargin

returns the number of input arguments supplied when the function was called and
enables default values to be assigned to arguments that have not been specified. In
this case, if the call to sqrtn does not specify a value for tol then eps is assigned to
tol.

An analogous function nargout returns the number of output arguments re-
quested. In this example there is no need to check nargout, because iter is computed
by the function whether or not it is requested as an output argument. Some functions
gain efficiency by inspecting nargout and computing only those output arguments
that are requested (for example svd, described in Section 9.7). To illustrate, List-
ing 7.6 shows how the marks script on p. 24 can be rewritten as a function. Its usage
is illustrated by

>> exmark = [12 0 5 28 87 3 56];

>> x_sort = marks2(exmark)

x_sort =

0 3 5 12 28 56 87

7.1 Scripts and Functions 89

Listing 7.5. Function sqrtn.

function [x,iter] = sqrtn(a,tol)

%SQRTN Square root of a scalar by Newton's method.

% x = SQRTN(a,tol) computes the square root of the scalar

% a by Newton's method (also known as Heron's method).

% a is assumed to be nonnegative.

% tol is a convergence tolerance (default eps).

% [x,iter] = SQRTN(a,tol) returns also the number of

% iterations iter for convergence.

if nargin < 2, tol = eps; end

x = a;

iter = 0;

xdiff = inf;

fprintf(' k x_k rel. change\n')

while xdiff > tol

iter = iter + 1;

xold = x;

x = (x + a/x)/2;

xdiff = abs(x-xold)/abs(x);

fprintf('%2.0f: %20.16e %9.2e\n', iter, x, xdiff)

if iter > 50

error('Not converged after 50 iterations.')

end

end

90 Program Files

Listing 7.6. Function marks2.

function [x_sort,x_mean,x_med,x_std] = marks2(x)

%MARKS2 Statistical analysis of marks vector.

% Given a vector of marks x,

% [x_sort,x_mean,x_med,x_std] = MARKS2(x) computes a

% sorted marks list and the mean, median, and standard deviation

% of the marks.

x_sort = sort(x);

if nargout > 1, x_mean = mean(x); end

if nargout > 2, x_med = median(x); end

if nargout > 3, x_std = std(x); end

>> [~,~,x_med] = marks2(exmark)

x_sort =

0 3 5 12 28 56 87

x_mean =

27.2857

x_med =

12

What if we want to obtain the standard deviation but not the other three statis-
tics? We can discard the unwanted outputs using the tilde symbol:

>> [~,~,~,x_med] = marks2(exmark)

x_med =

32.8010

The first three outputs are still computed, but they do not enter the main workspace.
Sometimes it is necessary to use a function call of the form

[a,b,~] = myfun(...)

It may seem strange to ask for a third output argument and then discard it, but
this usage can be appropriate for functions whose behavior depends on the number
of output arguments (type edit(condest) to see an example involving the function
lu).

7.2. Naming and Editing Program Files

Program files share with variables the naming restrictions described on p. 31. In
particular, file names are case sensitive. For how to check whether a tentative name
already exists, see the next section.

To create and edit program files you have two choices. You can use the built-in
MATLAB Editor/Debugger, shown in Figure 7.2. This is invoked by typing edit

at the command prompt or from the New or Open menu options on the Home tab
of the MATLAB Toolstrip. The MATLAB Editor has various features to aid in
editing program files, including automatic indentation of loops and if structures,

7.3 Working with Program Files and the MATLAB Path 91

Figure 7.2. MATLAB Editor/Debugger.

color syntax highlighting, bracket and quote matching, and the ability to comment
out blocks of code and fold sections of code. These and other features can be turned off
or customized via the MATLAB Preferences-Editor/Debugger menu. Alternatively,
you can use whatever text editor you normally use (if it is a word processor you need
to ensure that you save the files in plain text form and with a .m extension).

An advantage of using the MATLAB Editor is that it contains a Run button on
its toolbar that can be used to run the program being edited and which turns into
a Pause button when the code is running. If the Pause button is pressed then the
debugger is entered and the user can inspect variables and continue or abort execution
(see Section 14.3 for details of the debugger).

A very useful feature is block commenting: a block of code can be commented
out (no matter what editor you are using) by surrounding it by two special comment
lines:

%{

<block of code>

%}

Here, <block of code> denotes an arbitrary number of lines of code. MATLAB con-
siders all lines between %{ and %} to be comments, even those that are not individually
commented out with a leading % sign. Block comments can be nested, so that a block
comment can be extended without losing the original block comment.

7.3. Working with Program Files and the MATLAB Path

Many MATLAB functions are .m files residing on the disk, while others are built into
the MATLAB interpreter. MATLAB looks for program files in the current directory
and then on the search path, which is a list of directories. A program file is available
only if it is in the current directory or on the search path. The rules for deciding

92 Program Files

which function to call when there is more than one function of a given name in the
current scope can be found by searching the documentation for “function precedence
order”.

Type path to see the current search path. The path can be set and added to with
the path and addpath commands, or from the tool that is invoked by clicking Set
Path on the Home tab or by typing pathtool.

Several commands can be used to search the path. The what command lists the
MATLAB files (and other MATLAB-related files) in the current directory, grouped
by type; what dirname lists the MATLAB files in the directory dirname on the path.
The command lookfor keyword (illustrated on p. 28) searches the path for program
files containing keyword in their H1 line (the first line of help text). All the com-
ment lines displayed by the help command can be searched using lookfor keyword

-all. Some MATLAB functions use comment lines after the initial block of comment
lines to provide further information, such as bibliographic references (an example is
fminsearch). This information can be accessed using type but is not displayed by
help.

Typing which foo displays the pathname of the function foo or declares it to
be not found. This is useful if you want to know in which directory on the path a
program file is located. If you suspect there may be more than one program file with
a given name on the path you can use which foo -all to display all of them.

A script (but not a function) not on the search path can be invoked by typing run

followed by a statement in which the full pathname to the script is given.

You may list the program file foo.m to the screen with type foo or type foo.m.
(If there is a file called foo then type foo will list foo rather than foo.m.) Preceding
a type command with more on will cause the listing to be displayed a page at a time;
more off turns off paging.

Before writing a program file it is important to check whether the name you
are planning to give it is the name of an existing program file or built-in function.
This can be done in several ways: using which as just described, using type (e.g.,
type lu produces the response lu is a built-in function), using help, or using the
function exist. The command exist('myname') tests whether myname is a variable
in the workspace, a file (with various possible extensions, including .m) on the path,
or a directory. A result of 0 means no matches were found, while the numbers 1–8
indicate a match; see help exist for the precise meaning of these numbers. You
should also avoid using MATLAB keywords for program file or variable names. A
list of keywords can be obtained with the iskeyword function: these are break,
case, catch, classdef, continue, else, elseif, end, for, function, global, if,
otherwise, parfor, persistent, return, spmd, switch, try, while.

When a function residing on the path is invoked for the first time it is compiled
into memory. MATLAB can usually detect when a function has changed and then
automatically recompiles it when it is invoked.

To clear function fun from memory, type clear fun. To clear all functions type
clear functions.

7.4. Startup

When MATLAB starts it executes the script matlabrc.m (located in the directory
toolbox\local off the MATLAB root). This script sets various defaults and then
calls the script startup.m, if it exists on the MATLAB search path. The startup file

7.5 Command/Function Duality 93

is the place to make your own default settings and to add directories to the MATLAB
path. This file is best placed in your MATLAB startup directory (the directory that
is initially the current directory in MATLAB). To find how to change the startup
directory, search for “MATLAB Startup Folder” in the Help browser. A slightly
shortened version of our startup.m script is as follows. It uses the function ispc to
test if MATLAB is running on a PC (there are also analogous functions ismac and
isunix).

%STARTUP Startup file.

if ispc

prefix = 'd:\';

else % Mac or Unix.

prefix = '~/';

end

cd([prefix 'matlab'])

% Save original path, in case want to restore standard setup.

path_org = path;

mypaths = {%

'matlab/matrixcomp'

'matlab/misc'

'matlab/book'

'matlab/tools'

'matlab/mats'

'tex/expab/matlab'

'tex/unwinding/matlab'};

for i=1:length(mypaths)

addpath([prefix mypaths{i}],'-end')

end

clear i mypaths

format compact

7.5. Command/Function Duality

User-written functions are usually called by giving the function name followed by
a list of arguments in parentheses. Yet some built-in MATLAB functions, such as
type and what described in the previous section, are normally called with arguments
separated from the function name by spaces. This is not an inconsistency but an
illustration of command/function duality. Consider the function

function comfun(x,y,z)

%COMFUN Illustrative function with three string arguments.

disp(x), disp(y), disp(z)

We can call it with string arguments in parentheses (functional form) or with the
string arguments separated by spaces after the function name (command form):

94 Program Files

>> comfun('ab','cd','ef')

ab

cd

ef

>> comfun ab cd ef

ab

cd

ef

The two invocations are equivalent. Other examples of command/function duality
are (with the first in each pair being the most commonly used)

format long, format('long')

disp('Hello'), disp Hello

diary mydiary, diary('mydiary')

warning off, warning('off')

Note, however, that the command form should be used only for functions that
take string arguments. In the example

>> mean 2

ans =

50

MATLAB interprets 2 as a string and mean is applied to the ASCII value of 2,
namely 50. Note also that the command form can be used only when no output
argument is requested. Thus x = mean 2 gives an error.

Iterating MATLAB Commands
Command/function duality has the interesting consequence that many com-
mands can be iterated, in some cases only a certain number of times. For
example,

and and and

isa isa isa

are legal, but two or four iterations of these commands give an error. The
char function can be iterated an arbitrary number of times:

>> char char char char

ans =

char

char

char

So can the menu command, with interesting results—try it! For more, see
[78].

7.5 Command/Function Duality 95

>> why

Cleve insisted on it.

>> why

Jack knew it was a good idea.

— MATLAB

Replace repetitive expressions by calls to a common function.

— BRIAN W. KERNIGHAN and P. J. PLAUGER,

The Elements of Programming Style (1978)

Much of MATLAB’s power is derived from its extensive set of functions. . .

Some of the functions are intrinsic,

or “built-in” to the MATLAB processor itself.

Others are available in the library of external M-files distributed with MATLAB. . .

It is transparent to the user whether a function is intrinsic or contained in an M-file.

— 386-MATLAB User’s Guide (1989)

Chapter 8

Graphics

MATLAB has powerful and versatile graphics capabilities. Figures of many types can
be generated with relative ease and their “look and feel” is highly customizable. In
this chapter we cover the basic use of the most popular MATLAB tools for graphing
two- and three-dimensional data; Chapter 17 delves more deeply into the innards
of MATLAB graphics. Our philosophy of teaching a useful subset of the MATLAB
language, without attempting to be exhaustive, is particularly relevant to this chapter.
The final section hints at what we have left unsaid.

Our emphasis in this chapter is on generating graphics at the command line or in
programs, but existing figures can also be modified and annotated interactively using
the Plot Editor. The Plot Editor can be invoked from the Tools menu and toolbar of
the figure window (see doc plotedit).

The figures in this chapter—and throughout the book—are the results of saving
the figure window generated by the commands shown. We have not postprocessed
the MATLAB figures to make them more readable on the printed page. For more on
this issue, see Section 8.4. We also note that the limitations of the (CMYK-based)
printing process mean that colors can appear somewhat different in print to how they
appear on the screen.

Although all the examples in this chapter are concerned with plotting numeric ar-
rays or functions, we note that certain graphics commands work with other data types,
too. For example, plot works with graph objects (see Chapter 21) and histogram

works with categorical arrays (see Section 18.4).

8.1. Two-Dimensional Graphics

8.1.1. Basic Plots

The plot function can be used for simple “join-the-dots” x–y plots. Typing

>> x = [1.5 2.2 3.1 4.6 5.7 6.3 9.4];

>> y = [2.3 3.9 4.3 7.2 4.5 6.1 1.1];

>> plot(x,y)

produces the left-hand picture in Figure 8.1, where the points x(i), y(i) are joined
in sequence. MATLAB opens a figure window (unless one has already been opened
as a result of a previous command) in which to draw the picture. In this example,
default values are used for a number of features, including the ranges for the x- and
y-axes, the spacing of the axis tick marks, and the color and type of the line used for
the plot.

More generally, we could replace plot(x,y) with plot(x,y,string), where string
combines up to three elements that control the color, marker, and line style. For

97

98 Graphics

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

Figure 8.1. Simple x–y plots. Left: default. Right: nondefault.

Figure 8.2. Default color order for lines and markers.

example, plot(x,y,'r*--') specifies that a red asterisk is to be placed at each
point x(i), y(i) and that the points are to be joined by a red dashed line, whereas
plot(x,y,'y+') specifies a yellow cross marker with no line joining the points. Ta-
ble 8.1 lists the options available. The right-hand picture in Figure 8.1 was produced
with plot(x,y,'kd:'), which gives a black dotted line with a diamond marker. The
three elements in string may appear in any order, so, for example, plot(x,y,'ms--')
and plot(x,y,'s--m') are equivalent.

More than one set of data can be passed to plot. For example,

plot(x,y,'g-',b,c,'r--')

superimposes plots of x(i), y(i) and b(i), c(i) with solid green and dashed red
line styles, respectively.

If the color is not specified then MATLAB cycles through the default set of seven
colors shown in Figure 8.2. Alternatively, the color can be specified by setting the
property Color to an RGB (red, green, blue) triple [r,g,b], where the coordinates
are on the interval [0, 1]. For example:

plot(x,y,'Color',[1 0.75 0.5])

The default colors shown in Figure 8.2 do not have names, but their RGB coordinates
can be obtained and used as in the example

a = get(groot,'defaultAxesColorOrder'); % 7-by-3 matrix.

plot(x,y,'-x','Color',a(4,:)) % Fourth color from default order.

The plot command also accepts matrix arguments. If x is an m-vector and
Y is an m-by-n matrix, plot(x,Y) superimposes the plots created by x and each
column of Y. Similarly, if X and Y are both m-by-n, plot(X,Y) superimposes the
plots created by corresponding columns of X and Y. If nonreal numbers are supplied
to plot then imaginary parts are generally ignored. The only exception to this rule

8.1 Two-Dimensional Graphics 99

Table 8.1. Options for the plot command.

Color
r Red
g Green
b Blue
c Cyan
m Magenta
y Yellow
k Black
w White

Marker
o Circle
* Asterisk
. Point
+ Plus
x Cross
s Square
d Diamond
^ Upward triangle
v Downward triangle
< Left triangle
> Right triangle
p Five-point star
h Six-point star

Line style
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Table 8.2. RGB coordinates for the colors in Table 8.1, as used for setting the Color

property. The lightness of each color can be reduced by multiplying the color vector by
a scalar on the interval [0, 1]. A color vector [x x x] produces gray for x ∈ [0, 1].

Color color vector
Red [1 0 0]

Green [0 1 0]

Blue [0 0 1]

Color color vector
Cyan [0 1 1]

Magenta [1 0 1]

Yellow [1 1 0]

Black [0 0 0]

White [1 1 1]

arises when plot is given a single argument. If Y is nonreal, plot(Y) is equivalent to
plot(real(Y),imag(Y)). In the case where Y is real, plot(Y) plots the columns of
Y against their index.

Color Spaces
In MATLAB colors are specified by a 1-by-3 vector of RGB (red, green,
blue) values. The RGB color space is just one of several commonly used
color spaces [73]. In fact there are several variants of RGB space that differ
in their white points, but this it not something that need concern MATLAB
users. Another color space is CMYK, with four coordinates cyan, magenta,
yellow, and black, which is the space universally used by color printing
devices. The black coordinate is redundant, but it is convenient to have a
black ink instead of having to print cyan, magenta, and yellow on top of
each other. Relations between RBG and CMYK are given in Table 8.2 and
illustrated in Figure 8.3.

You can exert further control by supplying more arguments to plot. The proper-
ties LineWidth (default 0.5 points) and MarkerSize (default 6 points) can be specified

100 Graphics

Figure 8.3. Color wheel showing how cyan, magenta, and yellow are obtained by
combining red, green, and blue.

in points, where a point is 1/72 inch. For example, the commands

plot(x,y,'LineWidth',2)

plot(x,y,'p','MarkerSize',10)

produce a plot with a 2-point line width and a 10-point marker size, respectively. For
markers that have a well-defined interior, the MarkerEdgeColor and MarkerFaceColor

can be set to one of the colors in Table 8.1. So, for example,

plot(x,y,'o','MarkerEdgeColor','m')

gives magenta edges to the circles. The left-hand plot in Figure 8.4 was produced
with

plot(x,y,'m--^','LineWidth',3,'MarkerSize',5)

and the right-hand plot with

plot(x,y,'--bs','MarkerSize',20,'MarkerFaceColor','g','LineWidth',2)

Other properties include FontSize, in points, and FontAngle, which must be either
normal or italic. Default values for these properties are summarized in Table 8.3.

Using loglog instead of plot causes the axes to be scaled logarithmically. This
feature is useful for revealing power-law relationships as straight lines. In the example
below we plot |1 + h+ h2/2− exp(h)| against h for h = 10, 1, 10−1, 10−2, 10−3, 10−4.
This quantity behaves like a multiple of h3 when h is small, and hence on a log–log
scale the values should lie close to a straight line of slope 3. To confirm this, we also
plot a dashed reference line with the predicted slope, exploiting the fact that more
than one set of data can be passed to the plot commands. The output is shown in
Figure 8.5.

8.1 Two-Dimensional Graphics 101

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

Figure 8.4. Two nondefault x–y plots.

Table 8.3. Default values for some properties.

LineWidth 0.5

MarkerSize 6

MarkerEdgeColor auto

MarkerFaceColor none

FontSize 10

FontAngle normal

h = 10.^[1:-1:-4];

taylerr = abs((1+h+h.^2/2) - exp(h));

loglog(h,taylerr,'-',h,h.^3,'--')

xlabel('h')

ylabel({'Absolute value','of error'})

title({'Error in quadratic Taylor approximation to exp(h),',...

'with reference line of slope 3.'})

box off

In this example, we used title, xlabel, and ylabel. These functions reproduce their
input string above the plot and on the x- and y-axes, respectively. The multiline y-axis
label and title are created by a cell array of strings, one for each line (see Section 18.7
for details of cell arrays). We also used the command box off, which removes the
box from the current plot, leaving just the x- and y-axes. MATLAB will, of course,
complain if nonpositive data is sent to loglog (it displays a warning and plots only
the positive data). Related functions are semilogx and semilogy, for which only the
x- or y-axis, respectively, is logarithmically scaled.

If one plotting command is later followed by another then the new picture will
either replace or be superimposed on the old picture, depending on the current hold
state. Typing hold on causes subsequent plots to be superimposed on the current
one, whereas hold off specifies that each new plot should start afresh. The default
status corresponds to hold off.

102 Graphics

10
-4

10
-3

10
-2

10
-1

10
0

10
1

h

10
-15

10
-10

10
-5

10
0

10
5

A
b

s
o

lu
te

 v
a

lu
e

o
f

e
rr

o
r

Error in quadratic Taylor approximation to exp(h),

with reference line of slope 3.

Figure 8.5. loglog example.

The command clf clears the current figure window, while close closes it. It is
possible to have several figure windows on the screen. The simplest way to create a
new figure window is to type figure. The nth figure window (where n is displayed in
the title bar) can be made current and visible, and moved on top of all other figures
on the screen, by typing figure(n). The command shg is equivalent to figure(n),
where the nth window is the current one. The command close all causes all the
figure windows to be closed.

It is possible to zoom in on a particular region of the plot using mouse clicks: see
the “zoom in” and “zoom out” icons on the figure toolbar and help zoom.

8.1.2. Axes and Annotation

Various aspects of the axes of a plot can be controlled with the axis command. Some
of the options are summarized in Table 8.4. The axes are removed from a plot with
axis off. The aspect ratio can be set to unity—so that, for example, a circle appears
circular rather than elliptical—by typing axis equal. The axis box can be made
square with axis square.

To illustrate, the four plots in Figure 8.6 were produced by

plot(fft(eye(17))) % (1,1) plot

plot(fft(eye(17))), axis equal % (1,2) plot

plot(fft(eye(17))), axis square % (2,1) plot

plot(fft(eye(17))), axis square, axis off % (2,2) plot

(The meaning of this interesting picture is described in [123].)
Setting axis([xmin xmax ymin ymax]) causes the x-axis to run from xmin to xmax

and the y-axis from ymin to ymax. To return to the default axis scaling, which
MATLAB chooses automatically based on the data being plotted, type axis auto. If
you want one of the limits to be chosen automatically by MATLABset it to -inf or

8.1 Two-Dimensional Graphics 103

Table 8.4. Some commands for controlling the axes.

axis([xmin xmax ymin ymax]) Set specified x- and y-axis limits
axis auto Return to default axis limits
axis equal Equalize data units on x-, y-, and z-axes
axis off Remove axes
axis square Make axis box square (cubic)
axis tight Set axis limits to range of data
xlim([xmin xmax]) Set specified x-axis limits
ylim([ymin ymax]) Set specified y-axis limits

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-0.5

0

0.5

-1 0 1

-1

-0.5

0

0.5

1

Figure 8.6. plot(fft(eye(17))) with four variations of axis (see text).

104 Graphics

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

6

7

8
×10

5

0 0.5 1 1.5 2 2.5 3

0

5

10

15

20

25

30

35

40

45

50

Figure 8.7. Use of ylim (right) to change automatic (left) y-axis limits.

inf, e.g., axis([-1 1 -inf 0]). The x-axis and y-axis limits can be set individually
with xlim([xmin xmax]) and ylim([ymin ymax]).

Our next example plots the function 1/(x−1)2 +3/(x−2)2 over the interval [0, 3]:

x = linspace(0,3,500);

plot(x,1./(x-1).^2 + 3./(x-2).^2)

grid on

The result is shown in the left-hand plot of Figure 8.7. Because of the singularities at
x = 1, 2 the plot is uninformative. However, by executing the additional command

ylim([0 50])

the right-hand plot of Figure 8.7 is produced, which focuses on the interesting part
of the first plot. In these two plots we specified grid on, which introduces light
horizontal and vertical lines that extend from the axis ticks. Unfortunately, these
lines tend to become very light when printed, so for better printed results it may be
necessary to modify the gridlines with a command such as (here we also choose dotted
gridlines)

set(gca,'GridLineStyle',':','Gridalpha',1.0,'GridColor',[0 0 0])

See Figure 17.4 in the Advanced Graphics chapter for an example using these settings.
In the following example we plot the epicycloid

x(t) = (a+ b) cos t− b cos((a/b+ 1)t)

y(t) = (a+ b) sin t− b sin((a/b+ 1)t)

}
0 ≤ t ≤ 10π

for a = 12 and b = 5:

a = 12; b = 5;

t = 0:0.05:10*pi;

x = (a+b)*cos(t) - b*cos((a/b+1)*t);

y = (a+b)*sin(t) - b*sin((a/b+1)*t);

8.1 Two-Dimensional Graphics 105

-20 -10 0 10 20

x(t)

-25

-20

-15

-10

-5

0

5

10

15

20

25

y
(t

)

Epicycloid: a=12, b=5

Figure 8.8. Epicycloid example.

plot(x,y)

axis equal

axis([-25 25 -25 25])

grid on

title('Epicycloid: a=12, b=5')

xlabel('x(t)'), ylabel('y(t)')

The resulting picture appears in Figure 8.8. The axis limits were chosen to put some
space around the epicycloid.

Next we plot the Legendre polynomials of degrees 1–4 (for the properties of these
polynomials, see, for example, [166, Chap. 17]) and use the legend function to add
a box that explains the line styles. The legend function takes as arguments a list of
strings and puts each string next to the color/marker/line style information for the
corresponding line. The result is shown in Figure 8.9.

x = (-1:.01:1)';

p1 = x;

p2 = (3/2)*x.^2 - 1/2;

p3 = (5/2)*x.^3 - (3/2)*x;

p4 = (35/8)*x.^4 - (15/4)*x.^2 + 3/8;

plot(x,[p1 p2 p3 p4])

legend('Degree 1','Degree 2','Degree 3','Degree 4')

xlabel('x')

106 Graphics

ylabel('P_n','Rotation',0)

title('Legendre Polynomials P_n(x)')

Note that the strings in the ylabel and title commands contain a subscript. These
commands support a subset of the notation of the typesetting system TEX to specify
Greek letters, mathematical symbols, fonts, and superscripts and subscripts [57], [104],
[107], [112]. Table 8.5 lists some of the TEX notation supported, and a full list can be
found under Text Properties (see the entry for Text, Interpreter) in the Help browser,
reachable by typing doc interpreter. Curly braces can be used to delimit the range
of application of the font commands and of subscripts and superscripts. Thus

title('{\itItalic} Normal {\bfBold} \int_{-\infty}^\infty')

produces a title of the form “Italic Normal Bold
∫∞
−∞”. (Note that, unlike in TEX,

if you leave a space after a font command then that space is printed.) We used
the Rotation property to rotate the y-axis label, for better readability. The expres-
sions in the axis labels and title in Figure 8.9 are in upright font, whereas mathe-
matics is normally typeset in italic. This can be achieved by writing, for example,
ylabel('\it P_n','Rotation',0).

If you are unfamiliar with TEX or LATEX you may prefer to use texlabel('string'),
which allows 'string' to be given in the style of a MATLAB expression. Thus the
following two commands have identical effect:

title('Plot of \alpha(t)^{3/2}+\beta(t)^{12}-\sigma_i')

title(texlabel('Plot of alpha(t)^(3/2)+beta(t)^12-sigma_i'))

Now we make a number of refinements to the plot, which lead to the script
legendre_plot in Listing 8.1, which produces Figure 8.10. By default, the legend
box appears in the top right-hand (northeast) corner of the axis area, and this ob-
scures part of the plot in this example. The location of the box can be specified with
the syntax legend(',...,'Location',location), where location is a string with
possible values that include:

'North' inside plot box near top
'NorthWest' inside top left
'NorthOutside' outside plot box near top
'Best' automatically chosen to give least conflict with data
'BestOutside' automatically chosen to leave least unused space outside plot

These values can be abbreviated as 'N', 'NW', etc. We choose to put the legend in
the bottom right-hand corner. Once the plot has been drawn, the legend box can be
repositioned by putting the cursor over it and dragging it using the left mouse button.
We also turn off the box around the legend with legend('boxoff'). The legend

function has many other options, which can be seen by typing doc legend.
This example uses three other features.

• The text command is used to display the three-term recurrence satisfied by
the Legendre polynomials. Generally, text(x,y,'string') places 'string'

at the position whose coordinates are given by x and y. (A related function
gtext allows the text location to be determined interactively via the mouse.)

• The FontSize property is set in order to adjust the point size and angle of the
text produced by the xlabel, ylabel, title, and text commands (as Table 8.3
indicates, the default value of FontSize is 10).

8.1 Two-Dimensional Graphics 107

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
n

Legendre Polynomials P
n
(x)

Degree 1

Degree 2

Degree 3

Degree 4

Figure 8.9. Legendre polynomial example, using legend.

Table 8.5. Some of the TEX commands supported in text strings.

Greek letters
Lowercase
α \alpha

β \beta

γ \gamma
...

...
ω \omega

Uppercase
Γ \Gamma

∆ \Delta

Θ \Theta
...

...
Ω \Omega

Selected symbols
≈ \approx

◦ \circ

≥ \geq

= \Im

∈ \in

∞ \infty∫
\int

≤ \leq

6= \neq

⊗ \otimes

∂ \partial

± \pm

< \Re

∼ \sim√
\surd

Fonts
Normal \rm

Bold \bf

Italic \it

108 Graphics

Listing 8.1. Script legendre plot.

%LEGENDRE_PLOT Plot Legendre polynomials.

x = -1:.01:1;

p1 = x;

p2 = (3/2)*x.^2 - 1/2;

p3 = (5/2)*x.^3 - (3/2)*x;

p4 = (35/8)*x.^4 - (15/4)*x.^2 + 3/8;

plot(x,p1,'k-',x,p2,'r--',x,p3,'g-.',x,p4,'b-','linewidth',1)

box off

legend({'$n=1$','$n=2$','$n=3$','$n=4$'},'Location','SouthEast', ...

'Interpreter','latex')

legend('boxoff')

xlabel('x','FontSize',12,'Interpreter','latex')

ylabel('P_n','FontSize',12,'Interpreter','latex','Rotation',0)

title('Legendre Polynomials','FontSize',14,'FontWeight','normal')

text(-.8,.7,'$(n+1)P_{n+1}(x) = (2n+1)x P_n(x) - n P_{n-1}(x)$',...

'FontSize',12,'Interpreter','latex')

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Pn

Legendre Polynomials

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

n = 1
n = 2
n = 3
n = 4

Figure 8.10. Legendre polynomial example (revised), using legend.

8.1 Two-Dimensional Graphics 109

• We specified the xlabel, ylabel, title, and text command arguments in
LATEX notation. The LATEX interpreter, which supports the mathematical type-
setting features of LATEX [57], [107], [112], is invoked by setting the Interpreter
property to 'latex'. A benefit of using the LATEX interpreter is that mathe-
matics is typeset in italic.

• The title has been changed from the default bold weight to normal weight by
setting the FontWeight property to 'normal'.

The script pnorm_plot in Listing 8.2 makes more extensive use of the LATEX
interpreter and produces Figure 8.11. Note the use of the cell array options to avoid
repeatedly having to type the arguments 'Interpreter','latex','FontSize',18,
and the use of the HorizontalAlignment property in the ylabel to keep the label
away from the tick labels.

The fill function works in a similar manner to plot. Typing fill(x,y,color)

shades a polygon whose vertices are specified by the points x(i), y(i) in the color
specified by the RGB triple color (see Section 8.1.1). The points are taken in order,
and the last vertex is joined to the first.

The script in Listing 8.3 plots a cubic Bezier curve, which is defined by

p(u) = (1− u)3P1 + 3u(1− u)2P2 + 3u2(1− u)P3 + u3P4, 0 ≤ u ≤ 1,

where the four control points, P1, P2, P3, and P4, have given x and y compo-
nents. We use fill to shade the control polygon, that is, the polygon formed by
the control points. The matrix P stores the control point Pj in its jth column, and
fill(P(1,:),P(2,:),[.8 .8 .8]) shades the control polygon with light gray. The
columns of the matrix Curve are closely spaced points on the Bezier curve, and the
first plot command plots the curve. Figure 8.12 gives the resulting picture.

The function annotation allows the creation of annotation objects, including lines,
various types of arrow, rectangles, and ellipses. While powerful, this function is not
particularly easy to use because of the need to specify the location of these objects
in normalized coordinates, which represent the bottom left corner of the figure by
(0, 0) and the top right corner by (1, 1). Annotations are most easily created using
the interactive tools in the figure window. See doc annotation for details.

8.1.3. Multiple Plots in a Figure

The subplot command allows you to place a number of plots in a grid pattern together
on the same figure. Typing subplot(mnp) or, equivalently, subplot(m,n,p), splits
the figure window into an m-by-n array of regions, each having its own axes. The
current plotting commands will then apply to the pth of these regions, where the
count moves along the first row, and then along the second row, and so on. So, for
example, subplot(425) splits the figure window into a 4-by-2 matrix of regions and
specifies that plotting commands apply to the fifth region, that is, the first region in
the third row. If subplot(427) appears later, then the region in the (4, 1) position
becomes active. Several examples in which subplot is used appear below.

For plotting mathematical functions the fplot command is useful. It adaptively
samples a function at enough points to produce a representative graph. The following
example generates the graphs in Figure 8.13.

110 Graphics

Listing 8.2. Function pnorm plot.

%PNORM_PLOT Plot p-norms of a vector.

n = 10; m = 100;

x = 1:n;

y = zeros(m,1);

pvals = linspace(1,10,m);

for i = 1:m

y(i) = norm(x,pvals(i));

end

plot(pvals,y,'LineWidth',2)

ylim([0 inf])

options = {'Interpreter','latex','FontSize',14};

ylabel('$\|x\|_p$',options{:},'Rotation',0,'HorizontalAlignment','right')

xlabel('p',options{:})

title(['\slshape Vector p-norm, for $x =' ...

'[1,2,\dots,' int2str(n) ']^T$'], options{:})

s = '$$\|x\|_p = \biggl(\sum_{i=1}^n|x_i|^p\biggr)^{1/p}$$';

text(options{:},'String',s,'Position',[3 40])

1 2 3 4 5 6 7 8 9 10

p

0

5

10

15

20

25

30

35

40

45

50

55

‖x‖p

Vector p-norm, for x = [1, 2, . . . , 10]T

‖x‖p =

(n∑

i=1

|xi|
p

)1/p

Figure 8.11. Plot with text produced using the MATLAB LATEX interpreter.

8.1 Two-Dimensional Graphics 111

Listing 8.3. Function bezier plot.

%BEZIER_PLOT Plot bezier curve and control polygon.

P = [0.1 0.3 0.7 0.8;

0.3 0.8 0.6 0.1];

axis([0 1 0 1])

hold on

u = 0:.01:1;

umat = [(1-u).^3; 3.*u.*(1-u).^2; 3.*u.^2.*(1-u); u.^3];

Curve = P*umat;

fill(P(1,:),P(2,:),[.8 .8 .8]) % Shaded control polygon.

plot(Curve(1,:),Curve(2,:),'k-','linewidth',2) % Bezier curve.

plot(P(1,:),P(2,:),'o','MarkerFaceColor','k') % Control points.

text(0.35,0.35,'control polygon')

text(0.05,0.3,'P_1')

text(0.25,0.8,'P_2')

text(0.72,0.6,'P_3')

text(0.82,0.1,'P_4')

hold off

Figure 8.12. Bezier curve and control polygon.

112 Graphics

0 2 4 6

0

5

10

0 5 10

-0.5

0

0.5

0.2 0.4 0.6 0.8 1

-10

-5

0

5

0 5 10 15

-1

-0.5

0

0.5

1

Figure 8.13. Example with subplot and fplot.

subplot(221)

fplot(@(x)exp(sqrt(x).*sin(12.*x)),[0 2*pi],'LineWidth',1.5)

subplot(222)

fplot(@(x)sin(round(x)),[0 10],'m--','LineWidth',2)

subplot(223)

fplot(@(x)cos(30.*x)./x,[0.05 1],'k:','LineWidth',2), ylim([-10 5])

subplot(224)

fplot(@(x)[sin(x),cos(2*x),1./(1+x)],[0 5*pi],'LineWidth',1.5),...

ylim([-1 1])

The first call to fplot produces a graph of exp(
√
x sin 12x) over the interval 0 ≤ x ≤

2π. (See Section 10.2 for an explanation of the anonymous function beginning with @.)
In the second call, we override the default solid line style by specifying a dashed line
with '--'. In the third and fourth cases we set limits on the y-axis with ylim. The
fourth fplot call shows how more than one function can be plotted in the same call;
it uses .* and ./ since fplot expects that the functions can be evaluated for vector
inputs. The fplot function can also detect and label asymptotes; see Figure 11.5 for
an example. See doc fplot for details of additional capabilities.

It is possible to produce irregular grids of plots by invoking subplot with different
grid patterns. For example, Figure 8.14 was produced as follows:

x = linspace(0,5*pi,100);

subplot(2,2,1)

plot(x,sin(x),'r','LineWidth',2), xlim([0 5*pi])

subplot(2,2,2)

plot(x,round(x),'b','LineWidth',2), xlim([0 5*pi])

subplot(2,1,2)

plot(x,sin(round(x)),'g','LineWidth',2)

xticks(pi*(0:5))

xticklabels({'0','\pi','2\pi','3\pi','4\pi','5\pi'})

8.2 Three-Dimensional Graphics 113

0 5 10 15

-1

-0.5

0

0.5

1

0 5 10 15

0

5

10

15

20

0 2 3 4 5

-1

-0.5

0

0.5

1

Figure 8.14. Irregular grid of plots produced with subplot.

The third argument to subplot can be a vector specifying several regions, so we could
replace the last line subplot command by subplot(2,2,3:4). This example also
illustrates how x-axis tick marks and their labels can be set with the functions xticks
and xticklabels; there are corresponding functions yticks and yticklabels for
the y-axis. Further functions xtickformat and xtickangle, and their counterparts
ytickformat and ytickangle, allow the format and the angle of rotation of the labels
to be set.

To complete this section, we list in Table 8.6 the most popular 2D plotting func-
tions in MATLAB. Some of these functions are discussed in Section 8.3.

8.2. Three-Dimensional Graphics

The function plot3 is the three-dimensional analogue of plot. The following example
illustrates the simplest usage: plot3(x,y,z) draws a “join-the-dots” curve by taking
the points x(i), y(i), z(i) in order. The result is shown in Figure 8.15.

t = -5:.005:5;

x = (1+t.^2).*sin(20*t);

y = (1+t.^2).*cos(20*t);

z = t;

plot3(x,y,z,'LineWidth',1.5)

grid on

FS = 'FontSize';

xlabel('x(t)',FS,14), ylabel('y(t)',FS,14)

zlabel('z(t)',FS,14,'Rotation',0,'HorizontalAlignment','right')

title('\it{plot3 example}',FS,14)

This example uses the functions xlabel, ylabel, and title, which were discussed

114 Graphics

Table 8.6. 2D plotting functions.

plot Simple x–y plot
loglog Plot with logarithmically scaled axes
semilogx Plot with logarithmically scaled x-axis
semilogy Plot with logarithmically scaled y-axis
yyaxis x–y plot with y-axes on left and right
polarplot Polar coordinates plot
fplot Function plotter
fill Polygon fill
area Filled area graph
bar Bar graph
barh Horizontal bar graph
histogram Histogram
pie Pie chart
comet Animated, comet-like, x–y plot
errorbar Error bar plot
quiver Quiver (velocity vector) plot
scatter Scatter plot
stairs Stairstep plot

in the previous section, and the analogous zlabel. Note that we have used the TEX
notation \it in the title command to produce italic text. The color, marker, and
line styles for plot3 can be controlled in the same way as for plot. So, for example,
plot3(x,y,z,'rx--') would use a red dashed line and place a cross at each point.
Note that for 3D plots the default is box off; specifying box on adds a box that
bounds the plot.

Two functions are available for plotting contours: fcontour for a function and
contour for a matrix of data. The following example produces contours for the
function sin(3y− x2 + 1) + cos(2y2− 2x) over the range −2 ≤ x ≤ 2 and −1 ≤ y ≤ 1;
the result can be seen in Figure 8.16.

subplot(311)

fcontour(@(x,y)sin(3*y-x.^2+1)+cos(2*y.^2-2*x),[-2 2 -1 1]);

subplot(312)

f = fcontour(@(x,y)sin(3*y-x.^2+1)+cos(2*y.^2-2*x),[-2 2 -1 1]);

f.Fill = 'on'; colorbar

subplot(313)

x = -2:.01:2; y = -1:.01:1;

[X,Y] = meshgrid(x,y);

Z = sin(3*Y-X.^2+1)+cos(2*Y.^2-2*X);

contour(x,y,Z,20)

Note that the contour levels have been chosen automatically. For the second plot we
exploit the fact that fcontour returns an object that allows various aspects of the
contour plot to be customized. Here, we set the regions between contour lines to be

8.2 Three-Dimensional Graphics 115

-5

40

20 40

0z(t)

plot3 example

20

y(t)

0

x(t)

5

0
-20

-20
-40 -40

Figure 8.15. 3D plot created with plot3.

colored, but we could also have set the contour levels, for example. We also add a
colorbar.

For the third contour plot in Figure 8.16 we first assign x = -2:.01:2 and y =

-1:.01:1 to obtain closely spaced points in the appropriate range. We then set
[X,Y] = meshgrid(x,y), which produces matrices X and Y such that each row of X

is a copy of the vector x and each column of Y is a copy of the vector y. (The
function meshgrid is extremely useful for setting up data for many of the MATLAB
3D plotting tools.) The matrix Z is then generated from array operations on X and
Y, with the result that Z(i,j) stores the function value corresponding to x(j), y(i).
This is precisely the form required by contour. Typing contour(x,y,Z,20) tells
MATLAB to regard Z as defining heights above the (x, y)-plane with spacing given
by x and y. The final input argument specifies that 20 contour levels are to be used;
if this argument is omitted MATLAB automatically chooses the number of contour
levels.

The next example illustrates the use of clabel to label contours, with the result
shown in Figure 8.17.

[X,Y] = meshgrid(-3:.05:3, -1.5:.025:1.5);

Z = 4*X.^2 - 2.1*X.^4 + X.^6/3 + X.*Y - 4*Y.^2 + 4*Y.^4;

cvals = [-2:.5:2 2.3 3:5 6:2:10];

[C,h] = contour(X,Y,Z,cvals);

clabel(C,h,cvals([1:2:9 10 11 14 16]))

xlabel('x'), ylabel('y')

title('Six hump camel back function','FontWeight','normal',...

'FontSize',12)

Here, we are using an interesting function having a number of maxima, minima, and
saddle points. The default choice of contour levels does not produce an attractive
picture, so we specify the levels (chosen by trial and error) in the vector cvals. The
clabel command takes as input the output from contour (C contains the contour

116 Graphics

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

0

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

0

1

-1

0

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

0

1

Figure 8.16. Contour plots with fcontour (top and middle) and contour (bottom).

data and h is a graphics object handle) and adds labels to the contour levels specified
in its third input argument. Again the contour levels need not be specified, but
the default of labeling all contours produces a cluttered plot in this example. An
alternative form of clabel is clabel(C,h,'manual'), which allows you to specify
with the mouse the contours to be labeled: click to label a contour and press return
to finish. The h argument of clabel can be omitted, in which case the labels are
placed unrotated and close to each contour, with a plus sign marking the contour.

The function mesh accepts data in a similar form to contour and produces wire-
frame surface plots. If meshc is used in place of mesh, a contour plot is appended
below the surface. The example below, which produces Figure 8.18, involves the
surface defined by sin(y2 + x) − cos(y − x2) for 0 ≤ x, y ≤ π. The first subplot is
produced by mesh(Z). Since no x, y information is supplied to mesh, row and column
indices are used for the axis ranges. The second subplot shows the effect of meshc(Z).
For the third subplot, we use mesh(x,y,Z), so the tick labels on the x- and y-axes
correspond to the values of x and y. We also specify the axis limits with axis([0 pi

0 pi -5 5]), which gives 0 ≤ x, y ≤ π and −5 ≤ z ≤ 5. For the final subplot, we use
mesh(Z) again, followed by hidden off, which causes hidden lines to be shown.

x = 0:.1:pi; y = 0:.1:pi;

[X,Y] = meshgrid(x,y);

Z = sin(Y.^2+X)-cos(Y-X.^2);

subplot(221), mesh(Z)

subplot(222), meshc(Z)

subplot(223), mesh(x,y,Z), axis([0 pi 0 pi -5 5])

subplot(224), mesh(Z), hidden off

The function surf differs from mesh in that it produces a solid filled surface plot,
and surfc adds a contour plot below. In the next example we call membrane, which
returns the first eigenfunction of an L-shaped membrane. The pictures in the first

8.2 Three-Dimensional Graphics 117

Six hump camel back function

-1

-1

0

0

0

0

0

0

1

1

1

1

1

12

2

2

2

2

2
2.3

2
.3

2.3

2.3

2
.3

2
.3

2
.3

3

3

3

3

3

36

6

6

6

6

6
10

10

1
0

10
10

1
0

10

-3 -2 -1 0 1 2 3

x

-1.5

-1

-0.5

0

0.5

1

1.5

y

Figure 8.17. Contour plot labeled using clabel.

-2

40

0

40
20

2

20

0 0

-2

-1

30

0

3020

1

20
10 10

-5

0

2
2

5

0 0

-2

40

0

40
20

2

20

0 0

Figure 8.18. Surface plots with mesh and meshc.

118 Graphics

Figure 8.19. Surface plots with surf, surfc, and waterfall.

row of Figure 8.19 show the effect of surf and surfc. The color map for the current
figure can be set using colormap; here, we set it to jet. See doc colormap and the
Aside on color maps below. The (2, 1) plot uses the shading function with the flat

option to remove the grid lines on the surface; another option is interp, which varies
the color over each segment by interpolation. The (2, 2) plot uses the related function
waterfall, which is similar to mesh but with the wireframes in the column direction
removed.

Z = membrane; FS = 'FontSize';

colormap(jet)

subplot(221), surf(Z), title('surf',FS,14)

subplot(222), surfc(Z), title('surfc',FS,14), colorbar

subplot(223), surf(Z), shading flat

title('surf shading flat',FS,14)

subplot(224), waterfall(Z), title('waterfall',FS,14)

Ordinarily, the color of a surface represents the height above the (x, y)-plane. How-
ever, mesh, surf, and related functions may also be used in the form mesh(x,y,Z,W),
which bases the colors on the array W; this form can be used to display other features
of the surface, or to impose an independent coloring pattern.

The fmesh and fsurf functions can directly plot functions without the need for
the use of meshgrid. For example, the code

fsurf(@(x,y) sin(y.^2+x) - cos(y-x.^2),[0 pi 0 pi])

plots Figure 8.20, which shows the same function as Figure 8.18.
The 3D pictures in Figures 8.15 and 8.18–8.20 use the default viewing angle. This

can be overridden with the function view. Typing view(a,b) sets the counterclock-
wise rotation about the z-axis to a degrees and the vertical elevation to b degrees.
The default is view(-37.5,30), while view(2) is equivalent to view(0,90) and gives

8.2 Three-Dimensional Graphics 119

Figure 8.20. Surface plot with fsurf.

a 2D view of a surface looking down from above. The rotate 3D tool on the toolbar
of the figure window enables the mouse to be used to change the angle of view by
clicking and dragging within the axis area.

It is possible to view a 2D plot as a 3D one by using the view command to
specify a viewing angle, or simply by typing view(3). Figure 8.21—a 3D version of
Figure 8.6—shows the result of typing

plot(fft(eye(17))); view(3); grid

Color Maps
For many years the default colormap in MATLAB was a rainbow color
map called jet, which runs from blue to red, passing through cyan, green,
yellow, and orange. In Release 2014b the default was replaced by a new
color map called parula: see Figure 8.22. The rainbow color map has
been the subject of criticism in recent years, for several reasons [12], [42].
First, it is not perceptually uniform: the perceived rate of change of color
is not constant along the map, appearing faster in the yellow and slower in
the green. Second, it can be hard to remember the ordering of the colors,
making interpretation of the image difficult (even with a color bar at its
side). Finally, information is lost when an image in the rainbow color map
is printed on a monochrome printer, since different colors map to the same
shade of gray. The parula map was designed to have a roughly constant
gradient of brightness from one end to the other. You can edit color maps
in MATLAB using the Colormap Editor, which can be invoked via the
command colormapeditor.

In the next example we generate a fractal landscape with the recursive function
land shown in Listing 8.4, which uses a variant of the random midpoint displacement
algorithm [139, Sec. 7.6]. (Recursion is discussed further in Section 10.9.) The basic

120 Graphics

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Figure 8.21. 3D view of a 2D plot.

jet

parula

Figure 8.22. Color maps jet and parula.

8.2 Three-Dimensional Graphics 121

Listing 8.4. Function land.

function B = land(A)

%LAND Fractal landscape.

% B = LAND(A) generates a random fractal landscape

% represented by B, where A is a square matrix of

% dimension N = 2^n + 1 whose four corner elements

% are used as input parameters.

N = size(A,1);

d = (N+1)/2;

level = log2(N-1);

scalef = 0.05*(2^(0.9*level));

B = A;

B(d,d) = mean([A(1,1),A(1,N),A(N,1),A(N,N)]) + scalef*randn;

B(1,d) = mean([A(1,1),A(1,N)]) + scalef*randn;

B(d,1) = mean([A(1,1),A(N,1)]) + scalef*randn;

B(d,N) = mean([A(1,N),A(N,N)]) + scalef*randn;

B(N,d) = mean([A(N,1),A(N,N)]) + scalef*randn;

if N > 3

B(1:d,1:d) = land(B(1:d,1:d));

B(1:d,d:N) = land(B(1:d,d:N));

B(d:N,1:d) = land(B(d:N,1:d));

B(d:N,d:N) = land(B(d:N,d:N));

end

step taken by land is to update an N-by-N matrix with nonzeros only in each corner
by filling in the entries in positions (1,d), (d,1), (d,d), (d,N), and (N,d), where d

= (N+1)/2, in the following manner:

w x

y z

→

w
w + x

2
x

w + y

2

w + x+ y + z

4

x+ z

2

y
y + z

2
z

+ noise.

The noise is introduced by adding a multiple of randn to each new nonzero element.
The process is repeated recursively on the four square submatrices whose corners are
defined by the nonzero elements until the whole matrix is filled. The scaling factor for
the noise is reduced by 20.9 at each level of recursion. Note that the input argument
A in land(A) must be a square matrix with dimension of the form 2n + 1, and only
the corner elements of A have any effect on the result.

In the example below that produces Figure 8.23 we use land to set up a height
matrix, B. For the surface plots, we use meshz, which works like mesh but hangs a

122 Graphics

vertical curtain around the edges of the surface. The first subplot shows the default
view of B. For the second subplot we impose a “sea level” by raising all heights that
are below the average value. The resulting data matrix, Bisland, is also plotted with
the default view. The third and fourth subplots use view([-75 40]) and view([240

55]), respectively. For these two subplots we also control the axis limits.

rng(3)

k = 2^5+1;

A = zeros(k);

A([1 k], [1 k]) = [1 1.25; 1.1 2.0];

B = land(A);

colormap('copper')

subplot(221), meshz(B)

FS = 'FontSize'; title('Default view',FS,12)

Bisland = max(B,mean(mean(B)));

Bmin = min(min(Bisland));

Bmax = max(max(Bisland));

subplot(222), meshz(Bisland)

title('Default view',FS,12)

subplot(223), meshz(Bisland)

view([-75 40])

axis([0 k 0 k Bmin Bmax])

title('view([-75 40])',FS,12)

subplot(224), meshz(Bisland)

view([240 55])

axis([0 k 0 k Bmin Bmax])

title('view([240 55])',FS,12)

Table 8.7 summarizes the most popular 3D plotting functions. Section 8.3 dis-
cusses some of these functions.

A feature common to all graphics functions is that NaNs are interpreted as “miss-
ing data” and are not plotted. For example,

plot([1 2 NaN 3 4])

draws two disjoint lines and does not connect “2” to “3”, while

A = peaks(80); A(28:52,28:52) = NaN; surfc(A);

% Use last 2/3 of jet colormap.

c = colormap(jet); colormap(c(round(end/3):end,:));

produces the surfc plot with a hole in the middle shown in Figure 8.24. (The function
peaks generates a matrix of height values corresponding to a particular function of
two variables and is useful for demonstrating 3D plots.)

MATLAB contains in its demos directory several functions with names beginning
cplx for visualizing functions of a complex variable (type what demos). Figure 8.25
shows the plot produced by cplxroot(3). In general, cplxroot(n) plots the Riemann
surface for the function z1/n.

8.2 Three-Dimensional Graphics 123

0

40

2

40

Default view

20

4

20

0 0

0

40

2

40

Default view

20

4

20

0 0

20

view([-75 40])

30

2

20 010 0

2.5

3
2

20 0

2.5

20

view([240 55])

0

3

Figure 8.23. Fractal landscape views.

Table 8.7. 3D plotting functions.

plot3 Simple x–y–z plot
fplot3 3D parametric curve
contour Contour plot
contourf Filled contour plot
contour3 3D contour plot
mesh Wireframe surface
meshc Wireframe surface plus contours
meshz Wireframe surface with curtain
fmesh 3D meshes, including parametric meshes
surf Solid surface
surfc Solid surface plus contours
fsurf 3D surfaces, including parametric surfaces
waterfall Unidirectional wireframe
bar3 3D bar graph
bar3h 3D horizontal bar graph
pie3 3D pie chart
fill3 Polygon fill
comet3 3D animated, comet-like plot
scatter3 3D scatter plot
stem3 Stem plot

124 Graphics

-10

80

-5

60 80

0

60
40

5

40
20

20

Figure 8.24. surfc plot of matrix containing NaNs.

-1

1

-0.5

0.5 1

0

0.5

0.5

0

1

0
-0.5

-0.5

-1 -1

Figure 8.25. Riemann surface for z1/3.

8.3 Specialized Graphs for Displaying Data 125

8.3. Specialized Graphs for Displaying Data

In this section we describe some additional functions from Tables 8.6 and 8.7 that are
useful for displaying data (as opposed to plotting mathematical functions).

A bar graph consists of bars of equal width whose lengths are proportional to the
values in the underlying data. MATLAB has four functions for plotting bar graphs,
covering 2D and 3D vertical or horizontal bar graphs, with options to stack or group
the bars. The simplest usage of the bar plot functions is with a single m-by-n matrix
input argument. For 2D bar plots elements in a row are clustered together, either in
a group of n bars with the default 'grouped' argument, or in one bar apportioned
among the n row entries with the stacked' argument.

The following code uses bar and barh to produce Figure 8.26:

Y = [7 6 5

6 8 1

4 5 9

2 3 4

9 7 2];

subplot(2,2,1)

bar(Y)

title('bar(...,''grouped'')')

subplot(2,2,2)

bar(0:5:20,Y)

title('bar(...,''grouped'')')

subplot(2,2,3)

bar(Y,'stacked')

title('bar(...,''stacked'')')

subplot(2,2,4)

barh(Y) % Horizontal bar graph.

title('barh')

Note that in the two-argument form bar(x,Y) the vector x provides the x-axis loca-
tions for the bars.

For 3D bar graphs the default arrangement is 'detached', with the bars for the
elements in each column distributed along the y-axis. The arguments 'grouped' and
'stacked' give 3D views of the corresponding 2D bar plots with the same arguments.
With the same data matrix, Y, Figure 8.27 is produced by

subplot(2,2,1)

bar3(Y)

title('bar3(...,''detached'')')

subplot(2,2,2)

bar3(Y,'grouped')

title('bar3(...,''grouped'')')

subplot(2,2,3)

126 Graphics

1 2 3 4 5

0

5

10
bar(...,'grouped')

0 5 10 15 20

0

5

10
bar(...,'grouped')

1 2 3 4 5

0

5

10

15

20
bar(...,'stacked')

0 5 10

1

2

3

4

5

barh

Figure 8.26. 2D bar plots.

bar3(Y,'stacked')

title('bar3(...,''stacked'')')

subplot(2,2,4)

bar3h(Y)

title('bar3h')

Note that with the default 'detached' arrangement some bars are hidden behind
others. A satisfactory solution to this problem can sometimes be found by rotating
the plot using view or the mouse.

Histograms, which show the distribution of data by intervals using bar graphs,
are produced by the histogram function. The first argument, y, to histogram is
the data vector and the second is either a scalar specifying the number of bins or a
vector defining the edges of the bins; if only y is supplied then an automatic binning
algorithm is used. Further property name–value pairs can be used to customize the
histogram. The following code generates Figure 8.28:

rng(1)

y = exp(randn(1000,1)/3);

subplot(2,2,1)

histogram(y)

title('Default binning')

subplot(2,2,2)

histogram(y,50)

title('50 bins')

subplot(2,2,3)

h = histogram(y,'binwidth',0.25,'FaceColor','green')

8.3 Specialized Graphs for Displaying Data 127

0

5

1
2

3

10

4

bar3(...,'detached')

5
3

2
1

0

5

1

10

2
3

bar3(...,'grouped')

4
5

0

10

1

20

2
3

bar3(...,'stacked')

4
5

1

0

2

3

5

4

bar3h

5

10

Figure 8.27. 3D bar plots.

title('Bin width 0.25')

bin_counts = h.Values

subplot(2,2,4)

histogram(y,16,'normalization','probability',...

'Orientation','horizontal','FaceColor','red',...

'EdgeColor','white','LineWidth',1)

title('Probability normalization')

The output of the code in the Command Window is

h =

Histogram with properties:

Data: [1000×1 double]

Values: [19 164 313 275 123 62 26 9 2 3 3 1]

NumBins: 12

BinEdges: [1×13 double]

BinWidth: 2.5000e-01

BinLimits: [2.5000e-01 3.2500e+00]

Normalization: 'count'

FaceColor: [0 1 0]

EdgeColor: [0 0 0]

Show all properties

bin_counts =

128 Graphics

Figure 8.28. Histograms produced with histogram, for a 1000-by-1 data vector.

19 164 313 275 123 62 26 9 2 3 3 1

Here, h is a Histogram object. Properties of the histogram can be changed after
plotting it by changing this object. The object also contains within it information
about the histogram that can be inspected; here we printed the bin counts. In the
last example we normalized the histogram so that the sum of all the bars is 1. See
doc histogram for more detail on all these features.

Pie charts can be produced with pie and pie3. They take a vector argument, x,
and corresponding to each element x(i) they draw a slice with area proportional to
x(i). A second argument explode can be given, which is a 0-1 vector with a 1 in
positions corresponding to slices that are to be offset from the chart. By default, the
slices are labeled with the percentage of the total area that they occupy; replacement
labels can be specified in a cell array of strings (see Section 18.7). The following code
produces Figure 8.29.

x = [1.5 3.4 4.2];

subplot(2,2,1), pie(x)

subplot(2,2,2), pie(x,[0 0 1])

subplot(2,2,3), pie(x,{'Slice 1','Slice 2','Slice 3'})

subplot(2,2,4), pie3(x,[0 1 0])

The area function produces a stacked area plot. With vector arguments, area is
similar to plot except that the area between the y-values and 0 (or the level specified
by the optional second argument) is filled; for matrix arguments, the plots of the
columns are stacked, showing the sum at each x-value. The following code produces
Figure 8.30.

rng(1)

x = [1:12 11:-1:8 10:15]; Y = [x' x']; % Y is 22-by-2.

8.4 Saving and Printing Figures 129

Figure 8.29. Pie charts.

subplot(2,1,1)

area(Y+randn(size(Y)))

axis tight

subplot(2,1,2)

Y = Y + 5*randn(size(Y));

area(Y,min(min(Y)))

axis tight

As for histogram, all the functions in this section can return an object that can
be used to manipulate the plot.

8.4. Saving and Printing Figures

If your default printer has been set appropriately, simply typing print will send the
contents of the current figure window to your printer. An alternative is to use the
print command to save the figure as a file. For example,

print -dpdf myfig.pdf

creates a PDF file myfig.pdf that can subsequently be printed or included in a
document. This file can be incorporated into a LATEX document, as in the following
outline:

\documentclass{article}

\usepackage{graphicx}

...

\begin{document}

...

\begin{center}

130 Graphics

2 4 6 8 10 12 14 16 18 20 22

0

10

20

30

2 4 6 8 10 12 14 16 18 20 22

0

10

20

30

Figure 8.30. Area graphs.

\includegraphics[width=8cm]{myfig.pdf}

\end{center}

...

\end{document}

See [57], [107], or [112] for more about LATEX.
The many options of the print command can be viewed with help print. The

print command also has a functional form, illustrated by

print('-pdf','myfig.pdf')

(an example of command/function duality—see Section 7.5). To illustrate the utility
of the functional form, the next example generates a sequence of five figures and saves
them to files fig1.pdf, . . . , fig5.pdf:

x = linspace(0,2*pi,50);

for i=1:5

plot(x,sin(i*x))

print('-dpdf',['fig' int2str(i) '.pdf'])

end

The second argument to the print command is formed by string concatenation (see
Section 18.1), making use of the function int2str, which converts its integer argu-
ment to a string. Thus when i=1, for example, the print statement is equivalent to
print('-dpdf2','fig1.pdf').

It is important to realize that graphics that look good on the screen may not
look so good in print. In particular, if you accept the default values of the various
graphics parameters your printed figures could be hard to read. Compare the first
two plots in Figure 8.31: in the first we used the default parameters while in the
second we increased LineWidth, FontSize, and MarkerSize and also adjusted the

8.5 On Things Not Treated 131

axis tick lengths. To produce visually attractive, readable printed figures it is usually
necessary to increase parameters such as these from their default values. This can be
done in three ways:

1. By appending modifiers such as 'FontSize',12 to the relevant commands.

2. By resetting the default values for properties prior to creating the MATLAB
figure. See Section 17.2 for details of this approach.

3. By changing font size, line thickness, etc., after the figure has been drawn, by
setting graphics objects properties, as described in Section 17.4.

Another approach to producing graphics for publication is to convert figures to
native LATEX figures in the language of the TikZ and PGFPlots packages. A function
matlab2tikz available on MATLAB Central File Exchange carries out this task and
was used to produce the third plot in Figure 8.31.

An alternative to the print command is the function export fig, which is not
part of MATLAB but is available from the MATLAB Central File Exchange. Like
print, this function writes a figure to a file in a variety of possible formats, but it
aims to produce a more faithful representation of the figure displayed on the screen,
overcoming some quirks of print. Many of the figures in this book were saved using
the following function.

function myprint(filename,prnt)

if nargin < 2, prnt = 1; end

if prnt == 1

set(gcf,'Color','w');

export_fig(['../figs/' filename '.pdf'])

end

The saveas command saves a figure to a file in a form that can be reloaded into
MATLAB. For example,

saveas(gcf,'myfig','fig')

saves the current figure as a binary FIG-file, which can be reloaded into MATLAB
with open('myfig.fig').

It is also possible to save and print figures from the File menu in the figure window.

8.5. On Things Not Treated

We have restricted our treatment in this chapter to high-level graphics functions
that deal with common 2D and 3D visualization tasks. The graphics capabilities of
MATLAB extend far beyond what is described here. On the one hand, MATLAB
provides access to lighting, transparency control, solid model building, texture map-
ping, and the construction of GUIs. On the other hand, it is possible to control
low-level details such as the tick labels and the position and size of the axes, and to
produce animation; how to do this is described in Chapter 17 on advanced graphics.
You can learn more by reading the MATLAB documentation and by exploring the
demonstrations in the matlab\demos directory. Try help demos, but note that not
all files in this directory are documented in the help information.

132 Graphics

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Runge's function with degree 5 and 20 interpolants

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Equispaced interpolation points

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Runge's function with degree 5 and 20 interpolants

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Equispaced interpolation points

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

Runge’s function with degree 5 and 20 interpolants

Equispaced interpolation points

Figure 8.31. Three versions of the same plot. Top left: default parameters. Top right:
parameters tuned for the printed page. Bottom: converted to LATEX tikzpicture

environment using matlab2tikz function.

8.5 On Things Not Treated 133

Figure 8.32. From the 1964 Gatlinburg Conference on Numerical Algebra. From left to
right: J. H. Wilkinson, W. J. Givens, G. E. Forsythe, A. S. Householder, P. Henrici,
and F. L. Bauer. (Source of photograph: Oak Ridge National Laboratory, U.S. Dept.
of Energy.)

Another area of MATLAB that we have not discussed is image handling and
manipulation. If you type what demos, you will find that the demos directory contains
a selection of MAT-files, most of which contain image data. These can be loaded and
displayed as in the following example, which produces the image shown in Figure 8.32:

load gatlin, image(X); colormap(map), axis off

This picture was taken at a meeting in Gatlinburg, Tennessee, in 1964, and shows six
major figures in the development of numerical linear algebra and scientific computing
(you can find some of their names in Table 5.3).

Before coding graphs in MATLAB you should think carefully about the design,
aiming for a result that is uncluttered and clearly conveys the intended message.
Good references on graphical design are [11, Chaps. 10, 11], [169], [170], [171].

Finally, for many more examples of creative MATLAB graphics, see the books by
D. J. Higham [67] and Trefethen [165], [166].

134 Graphics

“What is the use of a book,” thought Alice,

“without pictures or conversation?”

— LEWIS CARROLL, Alice’s Adventures in Wonderland (1865)

The close command closes the current figure window.

If there is no open figure window MATLAB opens one and then closes it.

— CLEVE B. MOLER

A picture is worth a thousand words.

— ANONYMOUS

Given their low data-density and

failure to order numbers along a visual dimension,

pie charts should never be used.

— EDWARD R. TUFTE, The Visual Display of Quantitative Information (1983)

It’s kind of scandalous that the world’s calculus books,

up until recent years, have never had a good picture4of a cardioid....

Nobody ever knew what a cardioid looked like, when I took calculus,

because the illustrations were done by graphic artists

who were trying to imitate drawings by previous artists,

without seeing the real thing.

— DONALD E. KNUTH, Digital Typography (1999)

4ezpolar(@(t)1+cos(t))

Chapter 9

Linear Algebra

MATLAB was originally designed for linear algebra computations, so it not surprising
that it has a rich set of functions for solving linear equation and eigenvalue problems.
Many of the linear algebra functions are based on routines from the LAPACK [3]
Fortran library.

Most of the linear algebra functions work for both real and complex matrices. We
write AT for the transpose of A and A∗ for the conjugate transpose of A. Recall
that a square matrix A is Hermitian if A∗ = A, symmetric if AT = A, and unitary if
A∗A = I, where I is the identity matrix. In addition, a matrix is skew-Hermitian if
A∗ = −A and skew-symmetric if AT = −A.

To avoid clutter, we use the appropriate adjectives for complex matrices. Thus,
when the matrix is real, “Hermitian” can be read as “symmetric” and “unitary” can
be read as “orthogonal”. For background on numerical linear algebra see [31], [53],
[75], [160], [167], [178], and, particularly for the algorithmic aspects, [8], [157], [158].

9.1. Matrix Properties

It is useful to be able to check what properties a matrix has, perhaps in order to select
a course of action or to verify that an expected property is present at the beginning
of a computation. MATLAB has a number of “is functions” for this purpose, which
are listed in Table 9.1. Here is an example:

>> format shortg

>> A = [1 1i; 1i 0], B = [1 1i; -1i 0]

A =

1 + 0i 0 + 1i

0 + 1i 0 + 0i

B =

1 + 0i 0 + 1i

0 - 1i 0 + 0i

>> [ishermitian(A), issymmetric(A)]

ans =

1×2 logical array

0 1

>> [ishermitian(B), issymmetric(B)]

ans =

1×2 logical array

1 0

135

136 Linear Algebra

Table 9.1. Logical is* functions for matrices.

isbanded Test for banded matrix
isdiag Test for diagonal matrix
ishermitian Test for Hermitian or skew-Hermitian matrix
issymmetric Test for symmetric or skew-symmetric matrix
istril Test for lower triangular matrix
istriu Test for upper triangular matrix

9.2. Norms and Condition Numbers

A norm is a scalar measure of the size of a vector or matrix. The p-norm of an
n-vector x is defined by

‖x‖p =

(n∑
i=1

|xi|p
)1/p

, 1 ≤ p <∞.

For p =∞ the norm is defined by

‖x‖∞ = max
1≤i≤n

|xi|.

The norm function can compute any p-norm and is invoked as norm(x,p), with default
p = 2. As a special case, for p = −inf the quantity mini |xi| is computed. Example:

>> x = 1:4; format

>> [norm(x,1) norm(x,2) norm(x,inf) norm(x,-inf)]

ans =

10.0000 5.4772 4.0000 1.0000

The p-norm of an m-by-n matrix is defined by

‖A‖p = max
x6=0

‖Ax‖p
‖x‖p

.

The 1- and ∞-norms can be characterized as

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |, “max column sum”,

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |, “max row sum”.

The 2-norm of A can be expressed as the largest singular value of A, max(svd(A))
(singular values and the svd function are described in Section 9.7). For matrices the
norm function is invoked as norm(A,p) and supports p = 1,2,inf and p = 'fro',
the Frobenius norm

‖A‖F =

(m∑
i=1

n∑
j=1

|aij |2
)1/2

.

(The norm function is an example of a function with an argument that can vary in
type: p can be a double or a string.) Example:

9.2 Norms and Condition Numbers 137

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>> [norm(A,1) norm(A,2) norm(A,inf) norm(A,'fro')]

ans =

18.0000 16.8481 24.0000 16.8819

For cases in which computation of the 2-norm of a matrix is too expensive the
function normest can be used to obtain an estimate. The call normest(A,tol) uses
the power method on A∗A to estimate ‖A‖2 to within a relative error tol; the default
is tol = 1e-6.

For a nonsingular square matrix A, the quantity κ(A) = ‖A‖‖A−1‖ ≥ 1 is called
the condition number with respect to inversion. It measures the sensitivity of the
solution of a linear system Ax = b to perturbations in A and b. The matrix A is
said to be well conditioned or ill conditioned according to whether κ(A) is small or
large, where the meaning of “small” and “large” depends on the context. A condition
number of the order of the reciprocal of eps is certainly regarded as large, because
it implies that A is within relative distance about eps of a singular matrix. The
condition number is computed by the cond function as cond(A,p). The p-norm
choices p = 1,2,inf,'fro' are supported, with default p = 2. For p = 2, rectangular
matrices are allowed, in which case the condition number is defined by κ2(A) =
‖A‖2 ‖A+‖2, where A+ is the pseudo-inverse (see Section 9.4).

Computing the exact condition number is expensive, so MATLAB provides two
functions for estimating the 1-norm condition number of a square matrix A, rcond and
condest. Both functions produce estimates usually of the correct order of magnitude
at about one-third the cost of explicitly computing A−1. Function rcond uses the
LAPACK condition estimator to estimate the reciprocal of κ1(A), producing a result
between 0 and 1, with 0 signaling exact singularity. Function condest estimates κ1(A)
and also returns an approximate null vector, which is required in some applications.
The command [c,v] = condest(A) produces a scalar c and vector v sich that c ≤
κ1(A) and norm(A*v,1) = norm(A,1)*norm(v,1)/c. Example:

>> A = gallery('grcar',8);

>> [cond(A,1) 1/rcond(A) condest(A)]

ans =

7.7778 5.3704 7.7778

>> [cond(A,1) 1/rcond(A) condest(A)]

ans =

7.7778 5.3704 7.2222

As this example illustrates, condest does not necessarily return the same result on
each invocation, as it makes use of rand.

The condest function makes use of a function normest1 that estimates the 1-norm
of a matrix. The matrix, B say, can be given implicitly by a handle to a function
that evaluates Bx or B∗x given x (function handles are described in Section 10.1).
The normest1 function, which implements the algorithm of [84], can therefore be

138 Linear Algebra

used to estimate ‖A−1‖1 given an LU factorization of A, as well as more complicated
condition number–related quantities.

9.3. Linear Equations

The fundamental tool for solving a linear system of equations is the backslash operator
\. It handles three types of linear system Ax = b, where the matrix A and the
vector b are given. The three possible shapes for A lead to square, overdetermined,
and underdetermined systems, as described below. More generally, the backslash
operator can be used to solve AX = B, where B is a matrix with p columns; in this
case MATLAB solves AX(:, j) = B(:, j) for j = 1: p.

9.3.1. Square System

If A is an n-by-n nonsingular matrix then A\b is the solution x to Ax = b, computed
by LU factorization with partial pivoting. During the solution process MATLAB
computes rcond(A), and it prints a warning message if the result is smaller than
about eps:

>> x = hilb(15)\ones(15,1);

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.024999e-18.

These warning messages can be turned off using warning off (see Section 14.2).
MATLAB recognizes three special forms of square matrices A in A\b and takes

advantage of them to reduce the computation.

• Triangular matrices, or permutations of triangular matrices. (The square matrix
A is upper triangular if aij = 0 for i > j, and lower triangular if aij = 0 for
j > i.) The system is solved by substitution.

• Upper Hessenberg matrices. (The square matrix A is upper Hessenberg if aij =
0 for i > j+ 1.) The system is solved by LU factorization with partial pivoting,
taking advantage of the Hessenberg form.

• Hermitian matrices or Hermitian positive definite matrices. (The Hermitian
matrix A is positive definite if x∗Ax > 0 for all nonzero vectors x, or, equiva-
lently, if all the eigenvalues are real and positive.) Cholesky factorization is used
if the matrix is Hermitian positive definite and LDL∗ factorization if the matrix
is merely Hermitian. How does MATLAB know whether the matrix is positive
definite? If the matrix has positive diagonal elements MATLAB attempts to
Cholesky factorize the matrix. If the Cholesky factorization succeeds it is used
to solve the system, otherwise the system is not definite and LDL∗ factorization
is used.

In general, A\B denotes the solution to AX = B, and it can also be written in
functional form as mldivide(A,B). With the forward slashforward slash operator, /,
A/B denotes the solution to XA = B, and it can be written mrdivide(A,B). The
expressions A\B and (B'/A')' are equivalent, but in practice usually differ due to
rounding errors.

When efficiency is important and A is structured, it may be appropriate to
use the linsolve function in place of the backslash operator. The syntax is X =

9.3 Linear Equations 139

linsolve(A,B,opts), which solves AX = B, or A∗X = B if opts.TRANSA has the
value true. The structure opts (see Section 18.7 for details of structures) specifies
one of several possible matrix properties, and linsolve gains efficiency over backslash
by not attempting to determine matrix properties itself. Table 9.2 shows how to set
opts in order to use linsolve to solve some particular types of structured system.
The usage is illustrated by the following script:

n = 8; rng(1), format short e

B = rand(n,2);

% Upper triangular A.

A = triu(rand(n));

opts = struct('UT',true);

X = linsolve(A,B,opts);

res = norm(B-A*X)

% Give LINSOLVE incorrect opts structure.

opts = struct('LT',true);

X = linsolve(A,B,opts);

res = norm(B-A*X)

% Upper triangular A, solve transposed system.

opts = struct('UT',true,'TRANSA',true);

X = linsolve(A,B,opts);

res = norm(B-A'*X)

% Symmetric indefinite A.

A = rand(n); A = A + A';

opts = struct('SYM',true);

X = linsolve(A,B,opts);

res = norm(B-A*X)

% Symmetric positive definite A.

A = rand(n); A = A*A';

opts = struct('SYM',true,'POSDEF',true);

X = linsolve(A,B,opts);

res = norm(B-A*X)

The output is

res =

1.5701e-16

res =

5.7384

res =

2.2204e-16

res =

4.0462e-15

res =

3.0250e-14

140 Linear Algebra

Table 9.2. Some examples of how to set the opts structure in linsolve.

Matrix property opts structure
Lower triangular opts = struct('LT',true)

Upper triangular opts = struct('UT',true)

Upper Hessenberg opts = struct('UHESS',true)

Symmetric/Hermitian opts = struct('SYM',true)

Symmetric/Hermitian and
positive definite opts = struct('SYM',true,'POSDEF',true)

(Conjugate) transpose:
linsolve solves A∗X = B opts = struct('TRANSA',true)

The residuals in this example should be of order eps for a correct solution. The second
call to linsolve wrongly specifies the matrix A as lower triangular. Since linsolve

performs no checks on the matrix properties it gives an incorrect answer without any
warning or error. Hence care is required in the use of this function. The execution
time saved by using linsolve instead of backslash is highly dependent on the matrix
property and the dimension of the matrix. Rectangular systems, as described in the
next two subsections, can also be solved by linsolve; see the online help for details.

A special type of linear system is the Sylvester equation AX + XB = C, where
A is m-by-m, B is n-by-n, and C and X are m-by-n. This equation is solved with
the sylvester function: X = sylvester(A,B,C). The equation is nonsingular when
A and −B have no eigenvalue in common.

The Backslash Notation
The notation A\B for A−1B was suggested in a 1928 paper by Hensel [65],
along with A/B for AB−1. The suggestion does not appear to have been
taken up by anyone else. Cleve Moler independently invented the backslash
notation for MATLAB [127] and the term “backslash” is now commonly
used to mean solving a matrix equation.

Cayley devised two different notations for the products AB−1 and B−1A,
in the context of groups:

A
B

,
A
B

[16, p. 71], [22]; and, in an 1860 letter to Sylvester [138, Letter 45],

A
∼
B

,
A
v
B

.

Given the difficulty of typesetting them, it is not surprising that these no-
tations did not catch on.

9.3.2. Overdetermined System

If A has dimension m-by-n with m > n then Ax = b is an overdetermined system:
there are more equations than unknowns. In general, there is no x satisfying the

9.3 Linear Equations 141

system. The vector A\b is a least-squares solution to the system, that is, it minimizes
norm(A*x-b) (the 2-norm of the residual) over all vectors x. If A has full rank
n there is a unique least-squares solution. If A has rank k less than n then A\b

is a basic solution—one with at most k nonzero elements (k is determined, and x

computed, using the QR factorization with column pivoting). In the latter case
MATLAB displays a warning message.

A least-squares solution to Ax = b can also be computed as x min = pinv(A)*b,
where the function pinv computes the pseudo-inverse (see Section 9.4). In the case
where A is rank-deficient, x min is the unique solution of minimal 2-norm.

A vector that minimizes the 2-norm of Ax− b over all nonnegative vectors x, for
real A and b, is computed by lsqnonneg. The simplest usage is x = lsqnonneg(A,b),
and several other input and output arguments can be specified, including a starting
vector for the iterative algorithm that is used. Example:

>> A = gallery('lauchli',3,0.25), b = [1 2 4 8]';

A =

1.0000 1.0000 1.0000

0.2500 0 0

0 0.2500 0

0 0 0.2500

>> x = A\b; % Least-squares solution.

>> xn = lsqnonneg(A,b); % Nonnegative least-squares solution.

>> [x xn], [norm(A*x-b) norm(A*xn-b)]

ans =

-9.9592 0

-1.9592 0

14.0408 2.8235

ans =

7.8571 8.7481

9.3.3. Underdetermined System

If A has dimension m-by-n with m < n then Ax = b is an underdetermined system:
there are fewer equations than unknowns. The system has either no solution or
infinitely many. In the latter case A\b produces a basic solution. This solution is
generally not the solution of minimal 2-norm, which can be computed as pinv(A)*b.
If the system has no solution (that is, it is inconsistent) then A\b is a least-squares
solution. Here is an example that illustrates the difference between the \ and pinv

solutions:

>> A = [1 1 1; 1 1 -1], b = [3; 1]

A =

1 1 1

1 1 -1

b =

3

1

142 Linear Algebra

>> x = A\b; y = pinv(A)*b;

>> [x y]

ans =

2.0000 1.0000

0 1.0000

1.0000 1.0000

>> [norm(x) norm(y)]

ans =

2.2361 1.7321

9.4. Inverse, Pseudoinverse, and Determinant

The inverse of an n-by-n matrix A is a matrix X satisfying AX = XA = I, where
I is the identity matrix (eye(n)). A matrix without an inverse is called singular. A
singular matrix can be characterized in several ways: in particular, its determinant
is zero and it has a nonzero null vector, that is, there exists a nonzero vector v such
that Av = 0.

The matrix inverse is computed by the function inv. For example:

>> A = pascal(3), X = inv(A)

A =

1 1 1

1 2 3

1 3 6

X =

3.0000 -3.0000 1.0000

-3.0000 5.0000 -2.0000

1.0000 -2.0000 1.0000

>> norm(A*X-eye(3))

ans =

4.9651e-16

The inverse is formed using LU factorization with partial pivoting and the recipro-
cal condition estimate rcond is computed. A warning message is produced if exact
singularity is detected or if rcond is smaller than about eps.

Note that it is rarely necessary to compute the inverse of a matrix. For example,
solving a square linear system Ax = b by A\b is 2–3 times faster than by inv(A)*b and
often produces a smaller residual. It is usually possible to reformulate computations
involving a matrix inverse in terms of linear system solving, so that explicit inversion
is avoided.

The determinant of a square matrix is computed by the function . It is calculated
from the LU factors. Although the computation is affected by rounding errors in
general, det(A) returns an integer when A has integer entries:

>> A = vander(1:5)

A =

1 1 1 1 1

9.5 LU, LDL∗, and Cholesky Factorizations 143

16 8 4 2 1

81 27 9 3 1

256 64 16 4 1

625 125 25 5 1

>> det(A)

ans =

288

It is not recommended to test for nearness to singularity using det. Instead, cond,
rcond, or condest should be used.

The (Moore–Penrose) pseudo-inverse generalizes the notion of inverse to rectan-
gular and rank-deficient matrices A. It is written A+ and is computed with pinv(A).
The pseudo-inverse A+ of A can be characterized as the unique matrix X = A+ sat-
isfying the four conditions AXA = A, XAX = X, (XA)∗ = XA, and (AX)∗ = AX.
It can also be written explicitly in terms of the singular value decomposition (SVD):
if the SVD of A is given by (9.1) on p. 146 then A+ = V Σ+U∗, where Σ+ is n-by-m
diagonal with (i, i) entry 1/σi if σi > 0 and 0 otherwise. To illustrate,

>> pinv(ones(3))

ans =

0.1111 0.1111 0.1111

0.1111 0.1111 0.1111

0.1111 0.1111 0.1111

and if

A =

0 0 0 0

0 1 0 0

0 0 2 0

then

>> pinv(A)

ans =

0 0 0

0 1.0000 0

0 0 0.5000

0 0 0

9.5. LU, LDL∗, and Cholesky Factorizations

An LU factorization of a square matrix A is a factorization A = LU in which L is unit
lower triangular (that is, lower triangular with ones on the diagonal) and U is upper
triangular. Not every matrix can be factorized in this way, but when row interchanges
are incorporated the factorization always exists. The lu function computes an LU
factorization with partial pivoting PA = LU , where P is a permutation matrix. The
call [L,U,P] = lu(A) returns the triangular factors and the permutation matrix. The
permutations can be returned in the more storage-efficient form of a vector using the
call [L,U,p] = lu(A,'vector'), after which A(p,:) = L*U. See Section 24.3 for how

144 Linear Algebra

to convert between the vector and matrix representations of a permutation. With just
two output arguments, [L,U] = lu(A) returns L = PTL, so L is a triangular matrix
with its rows permuted. Example:

>> format short g

>> A = gallery('binomial',3), [L,U] = lu(A)

A =

1 2 1

1 0 -1

1 -2 1

L =

1 0 0

1 0.5 1

1 1 0

U =

1 2 1

0 -4 0

0 0 -2

The lu function also works for rectangular matrices. If A is m-by-n then [L,U] =

lu(A) produces an m-by-n L and n-by-n U if m ≥ n and an m-by-m L and m-by-n U

if m < n.
Using x = A\b to solve a linear system Ax = b with a square A is equivalent to LU

factorizing the matrix and then solving with the factors:

[L,U] = lu(A); x = U\(L\b);

As noted in Section 9.3.1, MATLAB takes advantage of the fact that L is a permuted
triangular matrix when forming L\b. An advantage of this two-step approach is that
if further linear systems involving A are to be solved then the LU factors can be reused,
with a saving in computation.

A Hermitian matrix can be factorized PAPT = LDL∗, where P is a permutation
matrix, L is unit lower triangular, and D is block diagonal with diagonal blocks of
dimension 1 or 2. Several variants of this factorization exist, corresponding to different
ways of choosing P . The MATLAB function ldl uses symmetric rook pivoting [70,
Sec. 11.1.3].

>> A = gallery('fiedler',3), [L,D,P] = ldl(A)

A =

0 1 2

1 0 1

2 1 0

L =

1 0 0

0 1 0

0.5 0.5 1

D =

0 2 0

2 0 0

0 0 -1

P =

1 0 0

9.6 QR Factorization 145

0 0 1

0 1 0

The appearance of a 2-by-2 block on the diagonal ofD, as in this case with D(1:2,1:2),
is a sign that A is indefinite, that is, has at least one negative eigenvalue.

Any Hermitian positive definite matrix has a Cholesky factorization A = R∗R,
where R is upper triangular with real, positive diagonal elements. The Cholesky
factor is computed by R = chol(A). For example:

>> A = pascal(4)

A =

1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

>> R = chol(A)

R =

1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1

Note that chol looks only at the elements in the upper triangle of A (including the
diagonal)—it factorizes the Hermitian matrix agreeing with the upper triangle of A.
An error is produced if A is not positive definite. The chol function can be used to
test whether a matrix is positive definite (indeed, this is as good a test as any) using
the call [R,p] = chol(A), where the integer p will be zero if the factorization succeeds
and positive otherwise; see help chol for more details about p.

Function cholupdate modifies the Cholesky factorization when the original matrix
is subjected to a rank-1 perturbation (either an update, +xx∗, or a downdate, −xx∗).

9.6. QR Factorization

A QR factorization of an m-by-n matrix A is a factorization A = QR, where Q is
m-by-m unitary and R is m-by-n upper triangular. This factorization is very useful
for the solution of least-squares problems and for constructing an orthonormal basis
for the columns of A. The command [Q,R] = qr(A) computes the factorization, while
when m > n [Q,R] = qr(A,0) produces an “economy size” version in which Q has
only n columns and R is n-by-n. Example:

>> format short e, A

A =

1 0 1

1 -1 1

2 0 0

>> [Q,R] = qr(A)

Q =

-4.0825e-01 1.8257e-01 -8.9443e-01

-4.0825e-01 -9.1287e-01 -5.5511e-17

146 Linear Algebra

-8.1650e-01 3.6515e-01 4.4721e-01

R =

-2.4495e+00 4.0825e-01 -8.1650e-01

0 9.1287e-01 -7.3030e-01

0 0 -8.9443e-01

A QR factorization with column pivoting has the form AP = QR, where P is
a permutation matrix. The permutation strategy that is used produces a factor R
whose diagonal elements are nonincreasing: |r11| ≥ |r22| ≥ · · · ≥ |rnn|. Column
pivoting is particularly appropriate when A is suspected of being rank-deficient, as
it helps to reveal near rank-deficiency. Roughly speaking, if A is near a matrix of
rank r < n then the last n− r diagonal elements of R will be of order eps*norm(A).
A third output argument forces the function qr to use column pivoting and return
the permutation matrix: [Q,R,P] = qr(A). The syntax [Q,R,p] = qr(A,'vector')

causes a permutation vector p to be returned such that A(:,p) = Q*R. If the economy
size factorization with column pivoting is requested, via [Q,R,p] = qr(A,0), then p is
a permutation vector. Continuing the previous example, we make A nearly singular
and see how column pivoting reveals the near singularity in the last diagonal element
of R:

>> A(2,2) = eps

A =

1.0000e+000 0 1.0000e+000

1.0000e+000 2.2204e-016 1.0000e+000

2.0000e+000 0 0

>> [Q,R,P] = qr(A); R, P

R =

-2.4495e+000 -8.1650e-001 -9.0649e-017

0 -1.1547e+000 -1.2820e-016

0 0 1.5701e-016

P =

1 0 0

0 0 1

0 1 0

Functions qrdelete, qrinsert, and qrupdate modify the QR factorization when
a column of the original matrix is deleted or inserted and when a rank-1 perturbation
is added.

9.7. Singular Value Decomposition

The SVD of an m-by-n matrix A has the form

A = UΣV ∗, (9.1)

where U is an m-by-m unitary matrix, V is an n-by-n unitary matrix, and Σ is a real
m-by-n diagonal matrix with (i, i) entry σi. The singular values σi satisfy σ1 ≥ σ2 ≥
· · · ≥ σmin(m,n) ≥ 0. The SVD is an extremely useful tool [53], [77]. For example, the
rank of A is the number of nonzero singular values and the smallest singular value
is the 2-norm distance to the nearest rank-deficient matrix. The complete SVD is

9.7 Singular Value Decomposition 147

computed using [U,S,V] = svd(A); if only one output argument is specified then a
vector of singular values is returned. Example:

>> A = reshape(1:9,3,3); format short e

>> svd(A)'

ans =

1.6848e+001 1.0684e+000 5.5431e-016

Here, the matrix is singular. The smallest computed singular value is at the level of
the unit roundoff rather than zero because of rounding errors.

When m > n the command [U,S,V] = svd(A,0) produces an “economy size”
SVD in which U is m-by-n with orthonormal columns and S is n-by-n. The call
[U,S,V] = svd(X,'econ') produces the same result as svd(X,0) when m ≥ n, but if
m < n it returns an n-by-m V with orthonormal columns and an m-by-m S. Example:

>> B = gallery('triw',[2 4],-2)

B =

1 -2 -2 -2

0 1 -2 -2

>> [U,S,V] = svd(B,'econ')

U =

-8.1124e-001 -5.8471e-001

-5.8471e-001 8.1124e-001

S =

4.1623e+000 0

0 2.1623e+000

V =

-1.9490e-001 -2.7041e-001

2.4933e-001 9.1601e-001

6.7076e-001 -2.0953e-001

6.7076e-001 -2.0953e-001

Functions rank, null, and orth compute, respectively, the rank, an orthonormal
basis for the null space, and an orthonormal basis for the range of their matrix argu-
ment. All three base their computation on the SVD, using a tolerance proportional to
eps to decide when a computed singular value can be regarded as zero. For example,
using the previous matrix:

>> format, rank(A)

ans =

2

>> null(A)

ans =

-0.4082

0.8165

-0.4082

>> orth(A)

ans =

-0.4797 0.7767

148 Linear Algebra

-0.5724 0.0757

-0.6651 -0.6253

Another function connected with rank computations is rref, which computes the
reduced row echelon form. Since the computation of this form is very sensitive to
rounding errors, this function is mainly of pedagogical interest.

The generalized SVD of an m-by-p matrix A and an n-by-p matrix B can be
written

A = UCX∗, B = V SX∗, C∗C + S∗S = I,

where U and V are unitary, X is nonsingular, and C and S are real diagonal matrices
with nonnegative diagonal elements. The numbers C(i, i)/S(i, i) are the generalized
singular values. This decomposition is computed by [U,V,X,C,S] = gsvd(A,B). See
help gsvd for more details about the dimensions of the factors.

9.8. Eigenvalue Problems

Algebraic eigenvalue problems are straightforward to define, but their efficient and
reliable numerical solution is a complicated subject. The MATLAB eig function
simplifies the solution process by recognizing and taking advantage of the number of
input matrices, as well as their structure and the output requested. It automatically
chooses among 16 different algorithms or algorithmic variants, corresponding to

• the standard (eig(A)) or generalized (eig(A,B)) problem,

• real or complex matrices A and B,

• symmetric/Hermitian A and B with B positive definite, or not,

• eigenvectors requested or not.

9.8.1. Eigenvalues

The scalar λ and the nonzero vector x are an eigenvalue and a corresponding eigenvec-
tor of the n-by-n matrix A if Ax = λx. The eigenvalues are the n roots of the degree-n
characteristic polynomial det(λI − A). The n + 1 coefficients of this polynomial are
computed by p = poly(A):

det(λI −A) = p1λ
n + p2λ

n−1 + · · ·+ pnλ+ pn+1.

The eigenvalues of A are computed with the eig function: e = eig(A) assigns
the eigenvalues to the vector e. More generally, [V,D] = eig(A) computes an n-by-n
diagonal matrix D and an n-by-n matrix V such that A*V = V*D. Thus D contains
eigenvalues on the diagonal, and the columns of V are eigenvectors. Not every matrix
has n linearly independent eigenvectors, so the matrix V returned by eig may be
singular (or, because of roundoff, nonsingular but very ill conditioned). The matrix
in the following example has two eigenvalues 1 and only one eigenvector:

>> [V,D] = eig([2 -1; 1 0])

V =

0.7071 0.7071

0.7071 0.7071

D =

1 0

0 1

9.8 Eigenvalue Problems 149

The scaling of eigenvectors is arbitrary (if x is an eigenvector then so is any nonzero
multiple of x). As the last example illustrates, MATLAB normalizes so that each
column of V has unit 2-norm. Note that eigenvalues and eigenvectors can be complex,
even for a real (non-Hermitian) matrix.

A Hermitian matrix has real eigenvalues and its eigenvectors can be taken to be
mutually orthogonal. For Hermitian matrices MATLAB returns eigenvalues sorted in
increasing order and the matrix of eigenvectors is unitary to working precision:

>> [V,D] = eig([2 -1; -1 1])

V =

-0.5257 -0.8507

-0.8507 0.5257

D =

0.3820 0

0 2.6180

>> norm(V'*V-eye(2))

ans =

2.2204e-016

A nonzero vector y is a left eigenvector of A corresponding to an eigenvalue λ if
y∗A = λy∗. Left eigenvectors are returned in a third output argument of eig. The
following example emphasizes that the eigenvalues of a real matrix are not necessarily
real:

>> A = gallery('leslie',3)

A =

1 1 1

1 0 0

0 1 0

>> [V,D,W] = eig(A) % Columns of W are left eigenvectors.

V =

-0.8503 + 0.0000i -0.1412 - 0.3752i -0.1412 + 0.3752i

-0.4623 + 0.0000i -0.3094 + 0.4471i -0.3094 - 0.4471i

-0.2514 + 0.0000i 0.7374 + 0.0000i 0.7374 + 0.0000i

D =

1.8393 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

0.0000 + 0.0000i -0.4196 + 0.6063i 0.0000 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i -0.4196 - 0.6063i

W =

-0.7071 + 0.0000i -0.4024 + 0.1719i -0.4024 - 0.1719i

-0.5935 + 0.0000i 0.6755 + 0.0000i 0.6755 + 0.0000i

-0.3844 + 0.0000i 0.1190 - 0.5814i 0.1190 + 0.5814i

>> norm(A*V - V*D,1) % Residual for right eigenvectors.

ans =

1.0666e-15

norm(W'*A - D*W',1) % Residual for left eigenvectors.

ans

= 1.2591e-15

150 Linear Algebra

In the next example eig is applied to the (non-Hermitian) Frank matrix:

>> F = gallery('frank',5)

F =

5 4 3 2 1

4 4 3 2 1

0 3 3 2 1

0 0 2 2 1

0 0 0 1 1

>> e = eig(F)'

e =

10.0629 3.5566 1.0000 0.0994 0.2812

This matrix has some special properties, one of which we can see by looking at the
reciprocals of the eigenvalues:

>> 1./e

ans =

0.0994 0.2812 1.0000 10.0629 3.5566

Thus if λ is an eigenvalue then so is 1/λ. The reason is that the characteristic
polynomial is anti-palindromic:

>> poly(F)

ans =

1.0000 -15.0000 55.0000 -55.0000 15.0000 -1.0000

Thus det(F − λI) = −λ5 det(F − λ−1I).
Function condeig computes condition numbers for the eigenvalues: a large condi-

tion number indicates an eigenvalue that is sensitive to perturbations in the matrix.
The following example displays eigenvalues in the first row and condition numbers in
the second:

>> A = gallery('frank',6);

>> [V,D,s] = condeig(A);

>> [diag(D)'; s']

ans =

12.9736 5.3832 1.8355 0.5448 0.0771 0.1858

1.3059 1.3561 2.0412 15.3255 43.5212 56.6954

For this matrix the small eigenvalues are slightly ill conditioned.

9.8.2. More about Eigenvalue Computations

The function eig works in several stages. First, when A is nonsymmetric, it balances
the matrix, that is, it carries out a similarity transformation A ← Y −1AY , where
Y is a permutation of a diagonal matrix chosen to give A rows and columns of ap-
proximately equal norm. The motivation for balancing is that it can lead to a more
accurate computed eigensystem. However, balancing can worsen rather than improve
accuracy (see doc eig for an example), so it may be necessary to turn balancing off
with eig(A,'nobalance'). Balancing can be carried out independently of eig using
the balance function.

9.8 Eigenvalue Problems 151

After balancing, eig reduces A to Hessenberg form, then uses the QR algorithm to
reach Schur form, after which eigenvectors are computed by substitution if required.
The Hessenberg factorization takes the form A = QHQ∗, where H is upper Hessen-
berg and Q is unitary. If A is Hermitian then H is Hermitian and tridiagonal. The
Hessenberg factorization is computed by H = hess(A) or [Q,H] = hess(A).

The real Schur decomposition of a real A has the form A = QTQT , where T
is upper quasi-triangular, that is, block triangular with 1-by-1 and 2-by-2 diagonal
blocks, and Q is orthogonal. The (complex) Schur decomposition has the form A =
QTQ∗, where T is upper triangular and Q is unitary. If A is real then T = schur(A)

and [Q,T] = schur(A) produce the real Schur decomposition. If A is complex then
schur produces the complex Schur form. The complex Schur form can be obtained
for a real matrix with schur(A,'complex') (it differs from the real form only when
A has one or more nonreal eigenvalues).

The Schur decomposition can be reordered (i.e., the eigenvalues placed in a dif-
ferent order on the diagonal blocks of T) using the ordschur function. The function
ordeig returns the eigenvalues of a quasi-triangular matrix in the order that they
appear along the (block) diagonal; for such matrices it is more efficient than applying
eig.

If A is real and symmetric (complex Hermitian), [V,D] = eig(A) reduces initially
to symmetric (Hermitian) tridiagonal form then iterates to produce a diagonal Schur
form, resulting in an orthogonal (unitary) V and a real, diagonal D.

9.8.3. Generalized Eigenvalues

The generalized eigenvalue problem is defined in terms of two n-by-n matrices A and
B: λ is an eigenvalue and x 6= 0 a corresponding eigenvector if Ax = λBx. A left
eigenvector y 6= 0 corresponding to λ satisfies y∗A = λy∗B.

The generalized eigenvalues are computed by e = eig(A,B), while the two-output
form [V,D] = eig(A,B) computes an n-by-n diagonal matrix D and an n-by-n ma-
trix V of eigenvectors such that A*V = B*V*D. Left eigenvectors are returned in a
third output argument: after [V,D,W] = eig(A,B) the columns of W contain the left
eigenvectors and W'*A = D*W'*B.

The theory of the generalized eigenproblem is more complicated than that of the
standard eigenproblem, with the possibility of zero, finitely many, or infinitely many
eigenvalues and of eigenvalues that are infinitely large. When B is singular eig

may return computed eigenvalues containing NaNs. To illustrate the computation of
generalized eigenvalues:

>> A = gallery('triw',3), B = magic(3)

A =

1 -1 -1

0 1 -1

0 0 1

B =

8 1 6

3 5 7

4 9 2

>> [V,D] = eig(A,B); V, eivals = diag(D)'

V =

152 Linear Algebra

-1.0000 -1.0000 0.3526

0.4844 -0.4574 0.3867

0.2199 -0.2516 -1.0000

eivals =

0.2751 0.0292 -0.3459

When A is Hermitian and B is Hermitian positive definite (the Hermitian definite
generalized eigenproblem) the eigenvalues are real and A and B are simultaneously
diagonalizable. In this case eig returns real computed eigenvalues sorted in increasing
order, with the eigenvectors normalized (up to roundoff) so that V'*B*V = eye(n);
moreover, V'*A*V is diagonal. The method that eig uses (Cholesky factorization
of B, followed by reduction to a standard eigenproblem and solution by the QR
algorithm) can be numerically unstable when B is ill conditioned. You can force eig

to ignore the structure and solve the problem in the same way as for general A and B
by invoking it as eig(A,B,'qz'); the QZ algorithm (see below) is then used, which
has guaranteed numerical stability but does not guarantee real computed eigenvalues.
Example:

>> A = gallery('fiedler',3), B = gallery('moler',3)

A =

0 1 2

1 0 1

2 1 0

B =

1 -1 -1

-1 2 0

-1 0 3

>> format short g

>> [V,D] = eig(A,B); V, eivals = diag(D)'

V =

0.55335 0.23393 2.3747

0.15552 -0.57301 1.2835

-0.36921 0.19163 0.90938

eivals =

-0.75993 -0.30839 17.068

>> V'*A*V

ans =

-0.75993 -1.6653e-16 -1.3323e-15

-1.5959e-16 -0.30839 1.6515e-15

-1.3323e-15 1.5543e-15 17.068

>> V'*B*V

ans =

1 -2.2204e-16 -2.2204e-16

-1.9429e-16 1 -1.6653e-16

-1.1102e-16 -1.249e-16 1

The function hess computes the Hessenberg form of A and B: QAZ = H, QBZ =
T , where H is upper Hessenberg, T is upper triangular, and Q and Z are unitary.

9.9 Iterative Linear Equation and Eigenproblem Solvers 153

The syntax is [H,T,Q,Z] = hess(A,B).
The generalized Schur decomposition of a pair of matrices A and B has the form

QAZ = T, QBZ = S,

where Q and Z are unitary and T and S are upper triangular. The generalized
eigenvalues are the ratios T(i,i)/S(i,i) of the diagonal elements of T and S. The
generalized real Schur decomposition of real A and B has the same form, with Q and Z

orthogonal and T and S upper quasi-triangular. These decompositions are computed
by the qz function with the command [T,S,Q,Z,V,W] = qz(A,B), where the output
arguments V and W are matrices of generalized right eigenvectors and left eigenvectors,
respectively. The function is named after the QZ algorithm that it implements. By
default the (possibly) complex form with upper triangular T and S is produced. For
real matrices, {qz(A,B,'real') produces the real form and {qz(A,B,'complex')

the default complex form. The generalized Schur decomposition can be reordered
using the ordqz function.

Function polyeig solves the polynomial eigenvalue problem (λpAp + λp−1Ap−1 +
· · · + λA1 + A0)x = 0, where the Ai are given square coefficient matrices. The gen-
eralized eigenproblem is obtained for p = 1, with A0 = I then giving the standard
eigenproblem. The quadratic eigenproblem (λ2A + λB + C)x = 0 corresponds to
p = 2. If Ap is n-by-n and nonsingular then there are pn eigenvalues. The syntax is
e = polyeig(A0,A1,..,Ap) or [X,e] = polyeig(A0,A1,..,Ap), with e a pn-vector
of eigenvalues and X an n-by-pn matrix whose columns are the corresponding eigen-
vectors. Example:

>> A = eye(2); B = [20 -10; -10 20]; C = [15 -5; -5 15];

>> [X,e] = polyeig(C,B,A)

X =

0.7071 0.7071 0.7071 0.7071

-0.7071 0.7071 -0.7071 0.7071

e =

-29.3178

-8.8730

-0.6822

-1.1270

An optional third output argument of polyeig returns condition numbers for the
eigenvalues. As this example shows, in the polynomial eigenvalue problem it is possible
for distinct eigenvalues to have the same eigenvector.

9.9. Iterative Linear Equation and Eigenproblem Solvers

In this section we describe functions that are based on iterative methods and primarily
intended for large, possibly sparse problems, for which solution by one of the methods
described earlier in the chapter could be prohibitively expensive. Sparse matrices are
discussed further in Chapter 15.

Several functions implement iterative methods for solving square linear systems
Ax = b; see Table 9.3. All apply to general A except minres and symmlq, which re-
quire A to be Hermitian, and pcg, which requires A to be Hermitian positive definite.
All the methods employ matrix–vector products Ax and possibly A∗x and do not

154 Linear Algebra

require explicit access to the elements of A. The functions have identical calling se-
quences, apart from gmres (see below). The simplest usage is x = solver(A,b) (where
solver is one of the functions in Table 9.3). Alternatively, x = solver(A,b,tol) spec-
ifies a convergence tolerance tol, which defaults to 1e-6. Convergence is declared
when an iterate x satisfies norm(b-A*x) <= tol*norm(b). The argument A can be a
full or sparse matrix, or a handle to a function afun such that afun(x) returns A*x

and, in the case of bicg and qmr, such that afun(x,'transp') returns A'*x.
These iterative methods usually need preconditioning if they are to be efficient.

All accept further arguments M1 and M2 or M = M1M2 and effectively solve the
preconditioned system

M−11 AM−12 ·M2x = M−11 b or M−1Ax = M−1b.

The aim is to choose M1 and M2 so that M−11 AM−12 or M−1A is in some sense
close to the identity matrix. Choosing a good preconditioner is a difficult task that
usually requires knowledge of the application from which the linear system came. The
functions ilu and ichol compute incomplete factorizations that provide one way of
constructing preconditioners (see doc ilu, doc ichol, and doc bicg). For background
on iterative linear equation solvers and preconditioning see [9], [54], [94], [145], [177].

To illustrate the usage of the iterative solvers we give an example involving pcg,
which implements the preconditioned conjugate gradient method. For A we take a
symmetric positive definite finite-element matrix called the Wathen matrix, which
has a fixed sparsity pattern and random entries:

>> rng(2) % Wathen matrix is random: make experiment reproducible.

>> A = gallery('wathen',12,12); n = length(A)

n =

481

>> b = ones(n,1);

>> x = pcg(A,b);

pcg stopped at iteration 20 without converging to the desired

tolerance 1e-006 because the maximum number of iterations was

reached.

The iterate returned (number 20) has relative residual 0.064.

>> x = pcg(A,b,1e-6,100);

pcg converged at iteration 84 to a solution with relative residual

8.9e-07.

We supplied pcg with the matrix and the right-hand side. The conjugate gradient
method did not converge to the default tolerance (10−6) within the default of 20
iterations, so we tried again with the same tolerance and a new limit of 100 iter-
ations; convergence was then achieved. For this matrix it can be shown that M =

diag(diag(A)) is a good preconditioner. Supplying this preconditioner as a fifth
argument leads to a useful reduction in the number of iterations:

>> [x,flag,relres,iter] = pcg(A,b,1e-6,100,diag(diag(A)));

>> flag, relres, iter

flag =

0

9.9 Iterative Linear Equation and Eigenproblem Solvers 155

Table 9.3. Iterative linear equation solvers.

Function Matrix type Method
bicg General BiConjugate gradient method
bicgstab General BiConjugate gradient stabilized method
bicgstabl General BiConjugate gradient stabilized method:

Bi-CGSTAB(`) with ` = 2
cgs General Conjugate gradient squared method
gmres General Generalized minimum residual method
lsqr General Conjugate gradients on normal equations
minres Hermitian Minimum residual method
pcg Hermitian pos. def. Preconditioned conjugate gradient method
qmr General Quasi-minimal residual method
tfqmr General Transpose-free quasi-minimal residual method
symmlq Hermitian Symmetric LQ method

relres =

8.2923e-07

iter =

28

Notice that when more than one output argument is requested the messages are
suppressed. A zero value of flag denotes convergence with relative residual relres
= norm(b-A*x)/norm(b) after iter iterations.

All the other functions in Table 9.3 have the same calling sequence as pcg with
the exception of gmres, which has an extra argument, restart, in the third position
that specifies at which iteration to restart the method.

Function eigs computes a few selected eigenvalues and eigenvectors for the stan-
dard eigenvalue problem or for the symmetric definite generalized eigenvalue problem
Ax = λBx with B real and symmetric positive definite. This is in contrast to eig,
which always computes the full eigensystem. Like the iterative linear equation solvers,
eigs needs just the ability to form matrix–vector products, so A can be given either
as an explicit matrix or as a handle to a function that performs matrix–vector prod-
ucts. In its simplest form, eigs can be called in the same way as eig, with [V,D]

= eigs(A), when it computes the six eigenvalues of largest magnitude and the cor-
responding eigenvectors. See doc eigs for more details and examples of usage. This
function is an interface to the ARPACK package [113]. As an example, we form a
sparse symmetric matrix and compute its five algebraically largest eigenvalues using
eigs. For comparison, we also apply eig, which requires that the matrix first be
converted to a full matrix and always computes all the eigenvalues.

>> A = delsq(numgrid('N',70)); % 5-pt finite difference Laplacian.

>> n = length(A)

n =

4624

>> nnz(A)/n^2 % Percentage of nonzeros

ans =

0.0011

156 Linear Algebra

>> tic, e_all = eig(full(A))'; toc

Elapsed time is 4.940357 seconds.

>> e_all(n:-1:n-4)

ans =

7.9959 7.9896 7.9896 7.9834 7.9793

>> options.disp = 0; % Turn off intermediate output.

tic, e_big = eigs(A,5,'la',options)'; toc % la = largest algebraic

Elapsed time is 0.446840 seconds.

e_big

e_big =

7.9959 7.9896 7.9896 7.9834 7.9793

The tic and toc functions provide an easy way of timing (in seconds) the code that
they surround (see Section 23.1 for more details). Clearly, eigs is much faster than
eig in this example, and it also uses much less storage.

A corresponding function svds computes a few singular values and singular vectors
of an m-by-n matrix A.

9.10. Functions of a Matrix

As mentioned in Section 5.3, some of the elementary functions defined elementwise
for arrays have counterparts defined in the matrix sense, implemented in functions
whose names end in m. The three main examples are expm, logm, and sqrtm. The
exponential of a square matrix A is defined by

eA = I +A+
A2

2!
+
A3

3!
+ · · · .

It is computed by expm. The logarithm of a matrix is an inverse to the exponential.
A nonsingular matrix has infinitely many logarithms. Function logm computes the
principal logarithm, which, for a nonsingular matrix with no negative real eigenvalues,
is the logarithm whose eigenvalues have imaginary parts lying strictly between −π
and π.

A square root of a square matrix A is a matrix X for which X2 = A. Every non-
singular matrix has at least two square roots. Function sqrtm computes the principal
square root, which, for a nonsingular matrix with no negative real eigenvalues, is the
square root with eigenvalues having positive real part.

We give some examples. The matrix

A =

17 8 1 0

8 18 8 1

1 8 18 8

0 1 8 17

has a tridiagonal square root:

>> format short g, sqrtm(A)

ans =

4 1 8.8818e-16 -2.7756e-16

9.10 Functions of a Matrix 157

1 4 1 -2.2204e-16

8.8818e-16 1 4 1

-2.7756e-16 -2.2204e-16 1 4

The Jordan block

>> A = gallery('jordbloc',4,1)

A =

1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1

has exponential

>> X = expm(A)

X =

2.7183 2.7183 1.3591 0.45305

0 2.7183 2.7183 1.3591

0 0 2.7183 2.7183

0 0 0 2.7183

and we can recover the original matrix using logm:

>> logm(X)

ans =

1 1 -7.5894e-17 2.7159e-17

0 1 1 -7.5894e-17

0 0 1 1

0 0 0 1

The function funm computes general matrix functions, using a method based on
the Schur decomposition. For the functions exp, log, cos, sin, cosh, and sinh, funm
can be used as in the following example, which computes cosA and sinA and checks
that cos(A)2 + sin(A)2 = I:

>> format short, A = gallery('frank',3)

A =

3 2 1

2 2 1

0 1 1

>> X = funm(A,@cos), Y = funm(A,@sin)

X =

0.3362 -0.2983 -0.1021

-0.3926 0.6267 -0.1963

0.1885 -0.3847 0.6345

Y =

-0.2455 -0.8062 -0.5435

-0.5255 -0.2635 -0.2628

-0.5615 0.2987 0.5607

>> residual = norm(X^2 + Y^2 - eye(3),1)

158 Linear Algebra

residual =

1.3045e-15

To compute other functions, say f(A) in general, it is necessary to write a separate
function of the form

function fd = fun(x,k)

that accepts a vector x and integer k and returns the kth derivative of f evaluated at
x. (funm has such functions built in for the cases listed above.) The derivatives are
needed when the matrix has repeated (and, in finite precision, close) eigenvalues.

In some applications it is not f(A) itself that is required but the action of f(A) on
a vector: f(A)b. MATLAB does not have any functions for this problem (except, of
course, in the special case f(x) = 1/x). Codes for computing f(A) for other functions
f (such as At for t ∈ R), and for the f(A)b problem, are available from various
sources [82].

For background on matrix functions see [71], [74], [81].

Nichols: “Transparent aluminum?”

Scott: “That’s the ticket, laddie.”

Nichols: “It’d take years just to figure out the dynamics of this matrix.”

McCoy: “Yes, but you would be rich beyond the dreams of avarice!”

— Star Trek IV: The Voyage Home (Stardate 8390)

We share a philosophy about linear algebra:

we think basis-free,

we write basis-free,

but when the chips are down we close the office door and

compute with matrices like fury.

— IRVING KAPLANSKY, Reminiscences [of Paul Halmos] (1991)

The matrix of that equation system is negative definite—which is a

positive definite system that has been multiplied through by −1.

For all practical geometries the common finite difference

Laplacian operator gives rise to these,

the best of all possible matrices.

Just about any standard solution method will succeed,

and many theorems are available for your pleasure.

— FORMAN S. ACTON, Numerical Methods That Work (1970)

Clearly, inv-abuse is a serious and common problem for MATLAB users.

— TIMOTHY A. DAVIS, Algorithm 930: FACTORIZE:

An Object-Oriented Linear System Solver for MATLAB (2013)

Chapter 10

More on Functions

10.1. Function Handles

Many problems tackled with MATLAB require one function to be passed as an argu-
ment to another. The usual mechanism for doing this is through a function handle. A
function handle is a MATLAB data type that contains all the information necessary
to evaluate a function. It can be created by putting the @ character before a function
name.

To illustrate, if fun is a function of the form required by fplot then we can write

fzplot(@fun)

to plot fun over the default range [−5, 5]. Here, fun can be a .m file or a built-in
function:

fplot(@sin)

A function that accepts another function as an argument will need to evaluate
the passed function. Evaluation is achieved simply by treating the function handle
as if it were a function name and appending a list of arguments to it. If the function
being called takes no input arguments then empty parentheses are required after the
function handle name. Consider the function fd deriv in Listing 10.1. This function
evaluates the finite difference approximation

f(x+ h)− f(x)

h
≈ f ′(x)

to the function passed as its first argument. When we type

>> fd_deriv(@sqrt,0.1)

ans =

1.5811

the first f call in fd deriv is equivalent to sqrt(x+h). We can use our Newton square
root function sqrtn (Listing 7.5) instead of the built-in square root:

>> fd_deriv(@sqrtn,0.1)

k x_k rel. change

1: 5.5000000745058064e-001 8.18e-001

% Remaining output from sqrtn omitted.

ans =

1.5811

159

160 More on Functions

Listing 10.1. Function fd deriv.

function y = fd_deriv(f,x,h)

%FD_DERIV Finite difference approximation to derivative.

% FD_DERIV(f,x,h) is a finite difference approximation

% to the derivative of function f at x with difference

% parameter h. h defaults to sqrt(eps).

if nargin < 3, h = sqrt(eps); end

y = (f(x+h) - f(x))/h;

You may come across the older syntax in which a function name is passed in a
string, as in fplot('exp'). This still works, but is not recommended. Within a
function, another function fun passed as a string must be evaluated as feval(fun,1)
(for example), not fun(1). The feval syntax also works with function handles. A
string representing the name of a function can be converted to a function handle using
the function str2func.

10.2. Anonymous Functions

Anonymous functions provide a way of creating a “one-line” function without writing
a program file. For example:

>> f = @(x) exp(x)-1

f =

@(x) exp(x)-1

>> f(2)

ans =

6.3891

Here, f is a function handle to the anonymous function on the right of the assignment,
which is so-called because it has no name. The @ character, which constructs the
function handle, is followed by a list of input arguments to the function in parentheses,
and then by a single MATLAB expression. Like any function handle, f can be passed
to other functions.

The expression that defines an anonymous function can contain variables not in
the argument list. The values of such variables are captured when the function is
created and they are held constant throughout the life of the function, as the next
example of a three-argument function illustrates:

>> alpha = 1;

>> g = @(x,y,z) x^2+y^2-alpha*z^2;

>> g(1,2,3)

ans =

-4

>> alpha = 0;

10.3 Local Functions 161

>> g(1,2,3)

ans =

-4

In order for the changed value of alpha to be reflected in g, the anonymous function
must be reconstructed. For another example of this type see Section 11.2.

One of the advantages of anonymous functions can be seen in connection with
the example from the previous section in which we invoked fd deriv on the function
sqrtn. Recall from Listing 7.5 that sqrtn has a second input argument that specifies
a convergence tolerance. Suppose we wish to use a different tolerance (say 1e-14)
when sqrtn is called by fd deriv. This does not seem possible, because fd deriv

invokes its input function with only one argument. A way round this difficulty is to set
up an anonymous function that calls sqrtn with the required convergence tolerance
and pass this one-argument function to fd deriv:

>> fd_deriv(@(x) sqrtn(x,1e-14), 0.1)

k x_k rel. change

1: 5.5000000745058064e-001 8.18e-001

% Remaining output from sqrtn omitted.

ans =

1.5811

Note that here we set up the anonymous function within the call to fd deriv. This
technique is very useful when calling the MATLAB “function-function” routines that
are described in the next two chapters.

Lambda
The notion of anonymous functions goes back to the language Lisp (1958),
with its lambda expressions, which were derived from the λ-calculus devel-
oped by mathematician and logician Alonzo Church in the 1930s. Many
modern programming languages support anonymous functions. For com-
parison, here are three ways in which the function 2x can be represented.

• In the λ-calculus: λx.2x.

• As an anonymous function in Lisp: (lambda (x) (* 2 x)).

• As an anonymous function in MATLAB: @(x) 2*x.

10.3. Local Functions

A function may contain other functions, called local functions (also known as sub-
functions), which appear in any order after the main (or primary) function. Local
functions are visible only to the main function and to any other local functions. They
typically carry out a task that needs to be separated from the main function but that
is unlikely to be needed in other functions, or they may override existing functions
of the same names (since local functions take precedence). The use of local functions
helps to avoid proliferation of .m files.

For an example of a local function see poly1err5 in Listing 10.2, which approxi-
mates the maximum error in the linear interpolating polynomial to local function f

on [0, 1] based on n sample points on the interval:

5This function is readily vectorized: see Section 23.2.

162 More on Functions

rosy(97,5) rosy(79,19)

Figure 10.1. Sample output from rosy.

>> poly1err(5)

ans =

0.0587

>> poly1err(50)

ans =

0.0600

Alternative ways to code poly1err are to define f as an anonymous function rather
than a local function (as long as f is given by a single expression) or to make f an
input argument.

Another example is shown in Listing 10.3, some graphical output from which is
displayed in Figure 10.1. It could be argued that the local function spiro in this
example is unnecessary and that the local function should be “inlined”. Our reason
for retaining the local function is to remind us that the formulas underlying rosy

are a special case of more complicated formulas—a fact that would be less clear after
inlining.

Help for a local function is displayed by specifying the main function name followed
by “>” and the name of the local function. Thus help for local function f of poly1err
is listed by

>> help poly1err>f

f Function to be interpolated, f(x).

A local function can be passed to another function as a function handle. Thus,
for example, in the main body of poly1err we can write fplot(@f) in order to plot
the local function f.

A script can also contain local functions. Local functions within scripts work in
much the same way as they do within functions. They must be located at the end of
the script and they have their own workspaces. Listing 10.4 is an example of a script
with a local function. It produces the output

>> test_solver

10.4 Default Input Arguments 163

Listing 10.2. Function poly1err containing local function f.

function max_err = poly1err(n)

%POLY1ERR Error in linear interpolating polynomial.

% POLY1ERR(n) is an approximation based on n sample points

% to the maximum difference between local function f and its

% linear interpolating polynomial at 0 and 1.

max_err = 0;

f0 = f(0); f1 = f(1);

for x = linspace(0,1,n)

p = x*f1 + (x-1)*f0;

err = abs(f(x)-p);

max_err = max(max_err,err);

end

end

% Local function.

function y = f(x)

%F Function to be interpolated, f(x).

y = sin(x);

end

Matrix | Rel resid norm(A,1) norm(x,1)

--

spiral | 2.3e-17 1.3e+04 2.3e+00

hadamard | 4.4e-17 2.4e+01 4.3e+00

invhess | 2.2e-17 3.0e+02 2.0e+00

parter | 6.4e-17 8.9e+00 8.7e+00

For less trivial examples of local functions see Chapter 12 (including Listing 12.10
for a script with local functions).

10.4. Default Input Arguments

As we saw in Section 7.1, by using nargin a function can be written so that only
the first few of its input arguments need be supplied on a particular call, the rest
being set to default values within the function. When a function is designed, its input
arguments should therefore be ordered starting with those that must be supplied
and continuing with those that can or cannot be specified, in decreasing order of
importance. To allow full flexibility a function can be written so that the user can
request default values to be defined for arguments that occur before the last argument
specified. The idea is for the empty matrix [] to be supplied as input argument and
for isempty to be used to detect an empty input argument.

Consider the following snippet from a function:

function f = funarg_ex(A, npts, nangles, step)

if nargin < 2 || isempty(npts), npts = length(A); end

if nargin < 3 || isempty(nangles), nangles = 10; end

164 More on Functions

Listing 10.3. Function rosy containing local function spiro.

function rosy(a, b)

%ROSY "Rose" figures.

% ROSY(a, b) plots the curve

% x = r*cos(a*theta), y = r*sin(a*theta), where

% r = sin(a*b*theta) and 0 <= theta <= 2*pi (360 values).

% Suggestions: ROSY(97, 5); ROSY(43, 4); ROSY(79, n9), n a digit.

% P. M. Maurer, A rose is a rose..., Amer. Math. Monthly, 94 (1987),

% pp. 631-645.

if nargin < 2, b = 1; end

if nargin < 1, a = 1; end

c = 0; d = 1; p = a*b;

[x, y] = spiro(a, a, c, d, p, .5);

plot(x,y)

axis square, axis off

% Local function.

function [x, y] = spiro(a, b, c, d, p, k)

h = k*2*pi/180;

t = (0:h:2*pi)';

r = c + d*sin(t*p);

x = r.*cos(a*t);

y = r.*sin(b*t);

Listing 10.4. Script test solver containing local function test.

%TEST_SOLVER Test linear equation solver.

n = 24; rng(1)

b = randn(n,1);

fprintf('Matrix | Rel resid norm(A,1) norm(x,1)\n')

fprintf('--\n')

test(spiral(n),b,'spiral')

test(hadamard(n),b,'hadamard') % n is restricted.

test(gallery('invhess',n),b,'invhess')

test(gallery('parter',n),b,'parter')

function test(A,b,name)

fprintf('%-8s %1s',name,'|')

% Or replace backslash with another solver and relevant statistics.

x = A\b; rel_res = norm(A*x-b,1)/(norm(A,1)*norm(x,1));

fprintf('%8.1e %8.1e %8.1e\n', rel_res, norm(A,1), norm(x,1))

end

10.5 Variable Numbers of Arguments 165

if nargin < 4, step = 0.1; end

Here, the array A must be supplied, but the other arguments are all optional. Example
invocations of the function are:

funarg_ex(rand(2),10,20,1e-3)

funarg_ex(rand(2),10)

funarg_ex(rand(2),[],50)

funarg_ex(rand(2),[],[],0.5)

When the empty matrix [] is passed as the second or third input argument the
isempty part of the corresponding if test ensures that the default value is assigned
to the relevant variable.

This technique is used by numerous MATLAB functions (for example, lsqr and
normest1). An alternative to a long list of input arguments, all of which are equally
likely to be required to take default values, is to use a structure to specify some of
the arguments. This is done by several of the MATLAB numerical methods functions
(see Chapters 11 and 12).

10.5. Variable Numbers of Arguments

In certain situations a function must accept or return a variable, possibly unlimited,
number of input or output arguments. This can be achieved using the varargin and
varargout functions. Suppose we wish to write a function companb to form the mn-
by-mn block companion matrix corresponding to the n-by-n matrices A1, A2, . . . ,
Am:

C =

−A1 −A2 −Am
I 0 0

I
. . .

...
. . . 0

...
I 0

 .
We could use a standard function definition such as

function C = companb(A_1,A_2,A_3,A_4,A_5)

but m is then limited to 5 and handling the different values of m between 1 and 5 is
tedious. The solution is to use varargin, as shown in Listing 10.5. When varargin

is specified as the input argument list, the input arguments supplied are copied into a
cell array called varargin. Cell arrays, described in Section 18.7, are a special kind of
array in which each element can hold a different type and size of data. The elements
of a cell array are accessed using curly braces. Consider the call

>> X = ones(2); C = companb(X, 2*X, 3*X)

C =

-1 -1 -2 -2 -3 -3

-1 -1 -2 -2 -3 -3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

166 More on Functions

Listing 10.5. Function companb.

function C = companb(varargin)

%COMPANB Block companion matrix.

% C = COMPANB(A_1,A_2,...,A_m) is the block companion matrix

% corresponding to the n-by-n matrices A_1,A_2,...,A_m.

m = nargin;

n = length(varargin{1});

C = diag(ones(n*(m-1),1),-n);

for j = 1:m

Aj = varargin{j};

C(1:n,(j-1)*n+1:j*n) = -Aj;

end

If we insert the line

varargin

at the beginning of companb then the above call produces

varargin =

1×3 cell array

[2×2 double] [2×2 double] [2×2 double]

Thus varargin is a 1-by-3 cell array whose elements are the 2-by-2 matrices passed
as arguments to companb, and varargin{j} is the jth input matrix, Aj .

It is not necessary for varargin to be the only input argument but it must be the
last one, appearing after any named input arguments.

An example using the analogous statement varargout for output arguments is
shown in Listing 10.6. Here, we use nargout to determine how many output argu-
ments have been requested and then create a varargout cell array containing the
required output. (It is the curly braces on the right-hand side of the assignment
statement that make varargout a cell array.) To illustrate:

>> m1 = moments(1:4)

m1 =

2.5000

>> [m1,m2,m3] = moments(1:4)

m1 =

2.5000

m2 =

7.5000

m3 =

25

10.6 Argument Checking and Parsing 167

Listing 10.6. Function moments.

function varargout = moments(x)

%MOMENTS Moments of a vector.

% [m1,m2,...,mk] = MOMENTS(x) returns the first, second, ...,

% k'th moments of the vector x, where the j'th moment

% is sum(x.^j)/length(x).

for j = 1:nargout, varargout(j) = {sum(x.^j)/length(x)}; end

10.6. Argument Checking and Parsing

MATLAB provides several functions to help in checking the arguments passed to
a function. The call narginchk(minargs,maxargs) issues an error if the number
of arguments passed to the function in which this command appears is less than
minargs or greater than maxargs. Likewise, nargoutchk(minargs,maxargs) checks
the number of output arguments requested.

Checks on the data types and attributes of the input arguments can be carried
out with the function validateattributes. The function arg checks in Listing 10.7
illustrates the usage. Here are some examples of calls to that function:

>> arg_checks(1,ones(3),2:4)

Error using arg_checks (line 5)

Not enough output arguments.

>> [y,Z] = arg_checks(1,ones(3,'int64'),2:4)

Error using arg_checks

Expected input number 2, A, to be one of these types:

double

Instead its type was int64.

Error in arg_checks (line 10)

validateattributes(A, {'double'}, {'finite', 'square', 'nonnan'},...

>> y = arg_checks(1,ones(3),4:-1:1)

Error using arg_checks (line 12)

Expected input to be non-decreasing valued.

>> y = arg_checks(1,ones(3),2:4,-1)

Error using arg_checks

Expected input number 4, tol, to be nonnegative.

Error in arg_checks (line 13)

validateattributes(tol, {'double','single'}, {'nonnegative'},...

Note that when the final three arguments to validateattributes are mfilename

(a function that returns the name of the currently executing program file), a string
representing the name of the argument being tested, and an integer representing the

168 More on Functions

number of the argument, then the error message includes the name of the function
and the name and position of the argument.

For details of all the attributes that can be checked with this function type doc

validateattributes.
For checking strings the function validatestring is useful. It allows a string to

be tested against a cell array of strings for a unique case-insensitive partial match.
Examples:

>> validatestring('Comm',{'Computation','commute','COMB'})

ans =

1×7 char array

commute

>> validatestring('com',{'Computation','commute','COMB'})

Expected input to match one of these values:

'Computation', 'commute', 'COMB'

The input, com, matched more than one valid value

The coding conventions in force, or personal preference, will dictate the balance
between brevity of code and checking every input for validity. Even within built-in
MATLAB functions the amount of argument checking varies greatly.

For some functions it is convenient to allow input arguments to be specified via
name–value pairs, listed in any order, as illustrated by the call

myfun(x,'Tolerance',1e-4,'Scaling','on','Output','verbose')

MATLAB provides an object called inputParser that carries out the nontrivial
task of parsing such input arguments, returning the arguments in a structure. The
inputParser object can optionally do case-sensitive and partial matching of parame-
ter names and provides a way for arguments to be checked for validity. For an example
of the use of inputParser see the code quadgk.

10.7. Nested Functions

MATLAB allows one or more functions to be nested wholly inside another. To define
the nesting, end statements must be placed at the end of the nested functions and
the main function (otherwise the functions are local functions), and it is good style
to indent the nested functions.

Nested functions have two key properties:

• A nested function has access to the workspaces of all functions within which it
is nested.

• A function handle for a nested function stores the information needed to access
the nested function and the values of any variables in functions containing the
nested function (“externally scoped” variables) that are needed to evaluate it.

An example of a nested function is given in rational ex in Listing 10.8, which
makes use of fd deriv in Listing 10.1. The example illustrates how a function depend-
ing on parameters can be passed to another function. In the body of rational ex

10.8 Private Functions 169

Listing 10.7. Function arg checks.

function [y,Z] = arg_checks(n,A,x,tol)

%ARG_CHECKS Illustrate argument checking.

narginchk(3,4) % Require 3 to 4 input arguments.

nargoutchk(1,2) % Require 1 to 2 output arguments.

if nargin < 4, tol = sqrt(eps); end

validateattributes(n, {'double', 'single'}, {'scalar', 'positive'})

validateattributes(A, {'double'}, {'finite', 'square', 'nonnan'},...

mfilename,'A',2)

validateattributes(x, {'numeric'}, {'nondecreasing'});

validateattributes(tol, {'double','single'}, {'nonnegative'},...

mfilename,'tol',4)

y = n*x.^2; Z = A.^2;

a function handle to the nested function rational is passed to fd deriv. The vari-
ables a, b, c, and d from the main function’s workspace are available inside rational,
and their values are encapsulated in the function handle that is passed to fd deriv.
Even though these four variables are not in the scope of fd deriv, this function can
correctly evaluate rational in terms of the values of the variables at the time the
function handle was created:

>> rational_ex(2)

ans =

3.0000

This example could be rewritten using an anonymous function, as in the example
involving sqrtn in Section 10.2. However, the anonymous function approach is appli-
cable only when the function is given by a single expression, which is quite limiting.
Nested functions have the advantage that they enable a single function (containing
nested functions) to be written to solve a complete problem involving a parametrized
function; we will use them extensively for this purpose in Chapters 12 and 26.

The precise scoping rules of nested functions can be found in the MATLAB doc-
umentation.

10.8. Private Functions

A typical MATLAB installation contains hundreds of program files on the user’s path,
all accessible just by typing the name of the file. While this ease of accessing program
files is an advantage, it can lead to clutter and clashes of names, not least due to the
presence of “helper functions” that are used by other functions but are not intended
to be called directly by the user. Private functions provide an elegant way to avoid
these problems. Any functions residing in a directory called private are visible only
to functions in the parent directory. They can therefore have the same names as
functions in other directories. When MATLAB looks for a function it searches local

170 More on Functions

Listing 10.8. Function rational ex containing a nested function r.

function rational_ex(x)

%RATIONAL_EX Illustration of nested function.

a = 1; b = 2; c = 1; d = -1;

fd_deriv(@rational,x)

function r = rational(x)

% Rational function.

r = (a+b*x)/(c+d*x);

end

end

functions first, then private functions (relative to the directory in which the function
making the call is located), then the current directory, and then the path. Hence
if a private function has the same name as a nonprivate function (even a built-in
function), the private function will be found first.

Good use of private functions is made by the gallery function, which lives in the
matlab\elmat directory and provides a collection of test matrices (see Section 5.1).
The 50 or so matrix-generating functions invoked by gallery live in matlab\elmat\

private, and their names were able to be chosen without fear of clashing with an
existing function (perhaps one in a toolbox).

Private directories should not be put on the path.
Help for a private function fun can be accessed using help private\fun.

10.9. Recursive Functions

Functions can be recursive, that is, they can call themselves, as we have seen with
function gasket in Listing 1.7 and function land in Listing 8.4. Recursion is a power-
ful tool, but not all computations that are described recursively are best programmed
this way, as alternative formulations may be faster or use less memory.

The function koch in Listing 10.9 uses recursion to draw a Koch curve [139,
Sec. 2.4]. The basic construction in koch is to replace a line by four shorter lines. The
upper left-hand picture in Figure 10.2 shows the four lines that result from applying
this construction to a horizontal line. The upper right-hand picture then shows what
happens when each of these four lines is processed. The two lower pictures show the
next two levels of recursion.

We see that koch has three input arguments. The first two, pl and pr, give
the (x, y) coordinates of the current line and the third, level, indicates the level of
recursion required. If level = 0 then a line is drawn; otherwise koch calls itself four
times with level one less and with endpoints that define the four shorter lines.

Figure 10.2 was produced by the following code:

pl = [0;0]; % Left endpoint

pr = [1;0]; % Right endpoint

10.9 Recursive Functions 171

0 0.5 1

-0.2

0

0.2

0.4

Koch curve: level = 1

0 0.5 1

-0.2

0

0.2

0.4

Koch curve: level = 2

0 0.5 1

-0.2

0

0.2

0.4

Koch curve: level = 3

0 0.5 1

-0.2

0

0.2

0.4

Koch curve: level = 4

Figure 10.2. Koch curves created with function koch.

for k = 1:4

subplot(2,2,k)

koch(pl,pr,k)

axis('equal')

title(['Koch curve: level = ' num2str(k)],'FontSize',12,...

'FontWeight','normal')

end

hold off

To produce Figure 10.3 we called koch with pairs of endpoints equally spaced
around the unit circle, so that each edge of the snowflake is a copy of the same Koch
curve. The relevant code is

level = 4; edges = 7;

for k = 1:edges

pl = [cos(2*k*pi/edges); sin(2*k*pi/edges)];

pr = [cos(2*(k+1)*pi/edges); sin(2*(k+1)*pi/edges)];

koch(pl,pr,level)

end

axis('equal')

title('Koch snowflake','FontSize',12,'FontAngle','italic',...

'FontWeight','normal')

hold off

For another example of recursion see the function lsys in Listing 26.6.

172 More on Functions

Listing 10.9. Function koch.

function koch(pl,pr,level)

%KOCH Recursively generated Koch curve.

% KOCH(pl, pr, level) recursively generates a Koch curve,

% where pl and pr are the current left and right endpoints and

% level is the level of recursion.

if level == 0

plot([pl(1),pr(1)],[pl(2),pr(2)],'b'); % Join pl and pr.

hold on

else

A = (sqrt(3)/6)*[0 1; -1 0]; % Rotate/scale matrix.

pmidl = (2*pl + pr)/3;

koch(pl,pmidl,level-1) % Left branch.

ptop = (pl + pr)/2 + A*(pl-pr);

koch(pmidl,ptop,level-1) % Left mid branch.

pmidr = (pl + 2*pr)/3;

koch(ptop,pmidr,level-1) % Right mid branch.

koch(pmidr,pr,level-1) % Right branch.

end

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Koch snowflake

Figure 10.3. Koch snowflake created with function koch.

10.10 Global and Persistent Variables 173

10.10. Global and Persistent Variables

Variables within a function are local to that function’s workspace. Occasionally it
is convenient to create variables that exist in more than one workspace, including,
possibly, the main workspace. This can be done using the global statement. As an
example, suppose we wish to study plots of the function f(x) = 1/(a + (x − b)2) on
[0, 1] for various a and b. We can define a function

function f = myfun(x)

global A B

f = 1./(A + (x-B).^2);

At the command line we type

>> global A B

>> A = 0.01; B = 0.5;

>> fplot(@myfun,[0 1])

The values of A and B set at the command line are available within myfun. New
values for A and B can be assigned and fplot called again without editing myfun.m.
However, in this example it is best to avoid the use of global by defining

function f = myfun2(x,A,B)

f = 1./(A + (x-B).^2);

and then using an anonymous function to set up the required values of A and B:

fplot(@(x)myfun2(x,0.01,0.5),[0 1])

Within a function, the global declaration should appear before the first occur-
rence of the relevant variables, ideally at the top of the file. By convention the names
of global variables are comprised of capital letters, and ideally the names are long in
order to reduce the chance of clashes with other variables.

The use of global variables is not recommended. With the use of anonymous
functions and nested functions they can usually be avoided.

Persistent variables are variables local to a function whose values are preserved
between calls to the function. They are essentially a more restricted form of global
variable. Persistent variables are declared with the persistent statement and are
initialized to the empty matrix if the variables do not already exist.

One use of persistent variables is to ensure that initialization calculations in a
function are carried out only the first time that function is called, as in the following
outline:

function persistent_ex(varargin)

persistent coeffs

if isempty(coeffs)

% Form the array coeffs on first call of function.

end

% Rest of function.

Another use is to preserve information about the state of a function between calls,
assuming it is not desirable to do so through variables in the argument list of the
function.

174 More on Functions

10.11. Exemplary Functions in MATLAB

Perhaps the best way to learn how to write functions is by studying well-written
examples. An excellent source of examples is MATLAB itself, since all functions
that are not built into the interpreter are .m files that can be examined. We list
below some functions that illustrate particular aspects of MATLAB programming.
The source can be viewed with type function name, by loading the file into the Edi-
tor/Debugger with edit function name (the editor searches the path for the function,
so the pathname need not be given), or by loading the file into your favorite editor
(in which case you will need to know the path, which we indicate).

• datafun/cov: use of varargin.

• datafun/var: argument checking.

• matfun/expm: argument checking, switch construct, local functions.

• elmat/hadamard: matrix building.

• elmat/why: switch construct, local functions.

• funfun/fminbnd: argument checking, loop constructs.

• specfun/nchoosek, matfun/private/sqrtm tri: recursive function.

• matfun/gsvd: local functions.

• funfun/ode45: use of varargin and varargout.

• sparfun/pcg: sophisticated argument handling and error checking.

Lambda is so useful that, like many of lisp’s features,

most modern languages are beginning to import the idea

from lisp into their own systems.

— DOUG HOYTE, Let Over Lambda. 50 Years of Lisp (2008)

In this example, ALEVIL is a function name

being passed to ROOT and MONEY is the ROOT of ALEVIL.

— ROGER EMANUEL KAUFMAN, A FORTRAN Coloring Book (1978)

Use recursive procedures for recursively-defined data structures.

— BRIAN W. KERNIGHAN and P. J. PLAUGER,

The Elements of Programming Style (1978)

Great fleas have little fleas upon their backs to bite ’em,

And little fleas have lesser fleas and so ad infinitum.

And the great fleas themselves, in turn, have greater fleas to go on;

While these again have greater still, and greater still, and so on.

— AUGUSTUS DEMORGAN

Chapter 11

Numerical Methods: Part I

This chapter describes the MATLAB functions for solving problems involving poly-
nomials, nonlinear equations, optimization, and the fast Fourier transform. In many
cases a function fun must be passed as an argument. The MATLAB functions de-
scribed in this chapter place various demands on the function that is to be passed,
but most require it to return a vector of values when given a vector of inputs.

Several functions described in this chapter make use of structures, which are one
of the MATLAB data types: see Section 18.7 for details of structures.

For mathematical background on the methods described in this chapter and the
next suitable textbooks are [7], [21], [23], [47], [55], [56], [91], [115], [151], [174].

11.1. Polynomials and Data Fitting

MATLAB represents a polynomial

p(x) = p1x
n + p2x

n−1 + · · ·+ pnx+ pn+1

by a row vector p = [p(1) p(2) ... p(n+1)] of the coefficients. (Note that compared
with the representation

∑n
i=0 pix

i used in many textbooks, the MATLAB vector is
reversed and its subscripts are increased by 1.)

Here are three problems related to polynomials:

Evaluation: Given the coefficients evaluate the polynomial at one or more points.

Root finding: Given the coefficients find the roots (the points at which the polyno-
mial evaluates to zero).

Data fitting: Given a set of data {xi, yi}mi=1, find a polynomial that “fits” the data.

The standard technique for evaluating p(x) is Horner’s method, which corresponds
to the nested representation

p(x) =

(
. . .
(

(p1x+ p2)x+ p3

)
x+ · · ·+ pn

)
x+ pn+1.

Function polyval carries out Horner’s method: y = polyval(p,x). In this command
x can be a matrix, in which case the polynomial is evaluated at each element of the
matrix (that is, in the array sense). Evaluation of the polynomial p in the matrix (as
opposed to array) sense is defined for a square matrix argument X by

p(X) = p1X
n + p2X

n−1 + · · ·+ pnX + pn+1I.

The command Y = polyvalm(p,X) carries out this evaluation.

175

176 Numerical Methods: Part I

The roots (or zeros) of p are obtained with z = roots(p). Of course, some of the
roots may be complex even if p is a real polynomial. The function poly carries out
the converse operation: given a set of roots it constructs a polynomial. Thus if z is
an n-vector then p = poly(z) gives the coefficients of the polynomial

p1x
n + p2x

n−1 + · · ·+ pnx+ pn+1 = (x− z1)(x− z2) . . . (x− zn).

(The normalization p1 = 1 is always used.) The function poly also accepts a matrix
argument: as explained in Section 9.8.1, for a square matrix A, p = poly(A) returns
the coefficients of the characteristic polynomial det(xI − A).

Function polyder computes the coefficients of the derivative of a polynomial, but
it does not evaluate the polynomial.

As an example, consider the quadratic p(x) = x2−x− 1. First, we find the roots:

>> format short g, p = [1 -1 -1]; z = roots(p)

z =

-0.61803

1.618

The next command verifies that these are roots, up to roundoff:

>> polyval(p,z)

ans =

-1.1102e-16

2.2204e-16

Next, we observe that a certain 2-by-2 matrix has p as its characteristic polynomial:

>> A = [0 1; 1 1]; cp = poly(A)

cp =

1 -1 -1

The Cayley–Hamilton theorem says that every matrix satisfies its own characteristic
polynomial. This is confirmed, modulo roundoff, for our matrix:

>> polyvalm(cp,A)

ans =

1.1102e-16 0

0 1.1102e-16

Polynomials can be multiplied and divided using conv and deconv, respectively.
When a polynomial g is divided by a polynomial h there is a quotient q and a re-
mainder r: g(x) = h(x)q(x) + r(x), where the degree of r is less than that of h.
The syntax for deconv is [q,r] = deconv(g,h). In the following example we divide
x3− 6x2 + 12x− 8 by x− 2, obtaining quotient x2− 4x+ 4 and zero remainder. Then
we reproduce the original polynomial using conv:

>> g = [1 -6 12 -8]; h = [1 -2];

>> [q,r] = deconv(g,h)

q =

1 -4 4

r =

11.1 Polynomials and Data Fitting 177

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 11.1. Left: least-squares polynomial fit of degree 3. Right: cubic spline. Data
is from 1/(x+ (1− x)2).

0 0 0 0

>> conv(h,q)

ans =

1 -6 12 -8

The data-fitting problem can be addressed with polyfit. Suppose the data
{xi, yi}mi=1 has distinct xi-values, and we wish to find a polynomial p of degree at
most n such that p(xi) ≈ yi, i = 1: m. The polyfit function computes the least-
squares polynomial fit, that is, it determines p so that

∑m
i=1(p(xi)− yi)2 is minimized.

The syntax is p = polyfit(x,y,n). Specifying the degree n so that n ≥ m produces
an interpolating polynomial, that is, p(xi) = yi, i = 1: m, so the polynomial fits the
data exactly. However, high-degree polynomials can be extremely oscillatory, so small
values of n are generally preferred. The following example computes and plots a least-
squares polynomial fit of degree 3. The data comprises the function 1/(x+ (1− x)2)
evaluated at 20 equally spaced points on the interval [−2, 2], generated by linspace.
The resulting plot is that on the left-hand side of Figure 11.1.

x = linspace(-2,2,20);

y = 1./(x+(1-x).^2);

p = polyfit(x,y,3);

xx = linspace(-2,2,100);

plot(x,y,'.',xx,polyval(p,xx),'-','MarkerSize',30,'LineWidth',2)

The spline function can be used if exact data interpolation is required. It fits a
cubic spline, sp(x), to the data {xi, yi}mi=1. sp(x) has the following properties:

• it is a cubic polynomial between each pair of successive points xi and xi+1 (i.e.,
it is a piecewise cubic polynomial),

• sp(xi) = yi, i = 1: m (i.e., sp interpolates the data),

• it has continuous first and second derivatives at the points xi (i.e., the cubic
pieces join up smoothly).

178 Numerical Methods: Part I

In addition, the extra freedom in the spline is used up by enforcing the not-a-knot
end conditions, the meaning of which can be found in the textbooks cited at the start
of this section.

Given data vectors x and y, the command yy = spline(x,y,xx) returns in the
vector yy the value of the spline at the points given by xx. The following code fits a
cubic spline to the data in the polynomial example above. The resulting curve is on
the right-hand side of Figure 11.1.

yy = spline(x,y,xx);

plot(x,y,'.',xx,yy,'-','MarkerSize',30,'LineWidth',2)

It is also possible to work with the coefficients of the spline curve. The command
pp = spline(x,y) stores the coefficients in a structure that is interpreted by the
ppval function, so plot(x,y,'.',xx,ppval(pp,xx),'--') would then produce the
same plot as in the example above. Low-level manipulation of splines is possible with
the functions mkpp and unmkpp.

MATLAB has another function for piecewise polynomial interpolation: pchip.
This function produces a piecewise cubic p(x) whose second derivative is generally
not continuous. However, pchip has one very special property: it maintains both the
shape and the monotonicity of the data. This means that on intervals where the data
is monotonic, so is p, and at points where the data has a local extremum, so does p.
To illustrate, consider this script:

x = [-12:4:12];

y = atan(x);

t = [-12:.1:12];

p = pchip(x,y,t);

s = spline(x,y,t);

plot(x,y,'ob',t,p,'r',t,s,'k','LineWidth',1.5)

xlim([-12 12])

legend('data','pchip','spline','Location','NW')

The script produces Figure 11.2. The spline is smooth, but oscillates between the
first three and last three data points; pchip has no oscillations, at the expense of a
slight loss of smoothness at the data points.

MATLAB has functions for interpolation in one, two, and more dimensions. For
one-dimensional interpolation, the function interp1 accepts x(i),y(i) data pairs
and a further vector xi. It fits an interpolant to the data and then returns the values
of the interpolant at the points in xi:

yi = interp1(x,y,xi)

The vector x must have monotonically increasing elements. Several types of inter-
polant are supported, as specified by a fourth input parameter, the main choices for
which are

’nearest’ nearest-neighbor interpolation
’linear’ linear interpolation (default)
’spline’ cubic spline interpolation
’pchip’ piecewise cubic Hermite interpolation

Linear interpolation puts a line between adjacent data pairs, while nearest-neighbor
interpolation reproduces the y-value of the nearest x point. The following example
illustrates interp1:

11.1 Polynomials and Data Fitting 179

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

data

pchip

spline

Figure 11.2. Interpolation with pchip and spline.

x = [0 pi/4 3*pi/8 3*pi/4 pi]; y = sin(x);

xi = linspace(0,pi,40)';

yn = interp1(x,y,xi,'nearest');

yl = interp1(x,y,xi,'linear');

ys = interp1(x,y,xi,'spline');

yp = interp1(x,y,xi,'pchip');

xx = linspace(0,pi,50);

plot(xi,yn,'*', xi,yl,'+', xi,ys,'v', xi,yp,'o')

legend('nearest','linear','spline','pchip')

hold on

plot(xx,sin(xx),'-',x,y,'.k','MarkerSize',30)

xticks(x)

xticklabels({'0','\pi/4','3\pi/8','3\pi/4','\pi'})

set(gca,'XGrid','on')

axis([-0.25 3.5 -0.1 1.1])

hold off

This code samples 5 points from a sine curve on [0, π], computes interpolants using
the four methods above, and evaluates the interpolants at 40 points on the interval.
In Figure 11.3 the solid circles plot the x(i),y(i) data pairs and the symbols plot
the interpolants. The graphics commands are discussed in Chapters 8 and 17.

MATLAB has two functions for two-dimensional interpolation: griddata and
interp2. The syntax for griddata is

ZI = griddata(x,y,z,XI,YI)

Here, the vectors x, y, and z are the data and ZI is a matrix of interpolated values
corresponding to the matrices XI and YI, which are usually produced with meshgrid.
A sixth string argument specifies the method:

180 Numerical Methods: Part I

0 /4 3 /8 3 /4

0

0.2

0.4

0.6

0.8

1 nearest

linear

spline

pchip

Figure 11.3. Interpolating a sine curve at five points using interp1.

’linear’ triangle-based linear interpolation (default)
’cubic’ triangle-based cubic interpolation
’nearest’ nearest-neighbor interpolation

Function interp2 has a similar argument list, but it requires x and y to be monotonic
matrices in the form produced by meshgrid. Here is an example in which we use
griddata to interpolate values on a surface:

rng(25); x = rand(100,1)*4 - 2; y = rand(100,1)*4 - 2;

z = x.*exp(-x.^2-y.^2);

hi = -2:.1:2;

[XI,YI] = meshgrid(hi);

ZI = griddata(x,y,z,XI,YI);

mesh(XI,YI,ZI), hold

plot3(x,y,z,'o'), hold off

The result is shown in Figure 11.4, which plots the original data points as circles and
the interpolated surface as a mesh.

Other interpolation functions include interp3 and griddata3 for three-dimensional
interpolation, interpn and griddatan for n-dimensional interpolation, and the func-
tions scatteredInterpolant and griddedInterpolant.

Further data-fitting capabilities are available in the Statistics and Machine Learn-
ing Toolbox.

11.2. Nonlinear Equations

MATLAB has routines for finding a zero of a function of one variable (fzero) and for
minimizing a function of one variable (fminbnd) or of n variables (fminsearch). In all

11.2 Nonlinear Equations 181

-0.4

2

-0.2

0

1 2

0.2

1

0.4

0

0.6

0
-1

-1

-2 -2

Figure 11.4. Interpolation with griddata.

cases the function must be real-valued and have real arguments. Unfortunately, there
is no provision for directly solving a system of n nonlinear equations in n unknowns.6

The simplest invocation of fzero is x = fzero(fun,x0), with x0 a scalar, which
attempts to find a zero of fun near x0. The function fun should be passed in one of
two ways, namely

1. as the handle to an anonymous function: fzero(@(x)cos(x)-x,x0),

2. as the handle to a function: fzero(@myfun,x0), where

function f = myfun(x)

f = cos(x)-x;

Thus to find a zero near 0, using an anonymous function:

>> fzero(@(x)cos(x)-x,0)

ans =

0.7391

More precisely, fzero looks for a point where fun changes sign, and will not find
zeros of even multiplicity. An initial search is carried out starting from x0 to find an
interval on which fun changes sign. The function fun must return a real scalar when
passed a real scalar argument. Failure of fzero is signaled by the return of a NaN.

If, instead of being a scalar, x0 is a 2-vector such that fun(x0(1)) and fun(x0(2))

have opposite sign, then fzero works on the interval defined by x0. Providing a
starting interval in this way can be important when the function has a singularity.
Consider the example

6However, an attempt at solving such a system could be made by minimizing the sum of squares of
the residual. The Optimization Toolbox contains a nonlinear equation solver. See also the MATLAB
codes provided with [96].

182 Numerical Methods: Part I

-3 -2 -1 0 1 2 3

-15

-10

-5

0

5

10

15

Figure 11.5. Plot produced by fplot(@(x)x-tan(x),[-pi,pi]), grid.

>> [x, fval] = fzero(@(x)x-tan(x),1)

x =

1.5708

fval =

1.2093e+015

The second output argument is the function value at x, the purported zero. Clearly,
in this example x is not a zero but an approximation to the point π/2 at which
the function has a singularity; see Figure 11.5. To force fzero to keep away from
singularities we can give it a starting interval that encloses a zero but not a singularity:

>> [x, fval] = fzero(@(x)x-tan(x),[-1 1])

x =

0

fval =

0

The convergence tolerance and the display of output in fzero are controlled by
a third argument, the structure options, which is best defined using the optimset

function. Four of the fields of the options structure are used: Display specifies the
level of reporting, with values off for no output, iter for output at each iteration,
final for just the final output, and notify for output only when the iteration fails to
converge; TolX is a convergence tolerance; FunValCheck determines whether function
values are checked for complex or NaN values; and OutputFcn specifies a user-defined
function that is called at each iteration. Example uses are

fzero(fun,x0,optimset('Display','iter'))

fzero(fun,x0,optimset('TolX',1e-4))

The default corresponds to

11.2 Nonlinear Equations 183

optimset('Display','notify','TolX',eps,'FunValCheck','off',...

'OutputFcn',[])

Note that the field names passed to optimset can be any combination of uppercase
and lowercase, and it is sufficient to type just enough characters of the field name to
uniquely identify it.

Suppose now that we wish to find a zero of the function f(x) = a sinx+ be−x
2/2,

where a and b are parameters that we wish to vary. Our function is called from within
fzero with just one argument, x, so how do we communicate the values of a and b?
As we discussed in Section 10.2, this can be achieved using an anonymous function:

>> a = 1; b = 2;

>> fzero(@(x)a*sin(x) + b*exp(-x^2/2),0)

ans =

-1.2274

>> a = 3; b = -1;

>> fzero(@(x)a*sin(x) + b*exp(-x^2/2),0)

ans =

0.3220

Note the importance of reconstructing the anonymous function each time a and b

change. Compare this example with

>> a = 1; b = 2;

>> f = @(x)a*sin(x) + b*exp(-x^2/2)

>> fzero(f,0)

ans =

-1.2274

>> a = 3; b = -1;

>> fzero(f,0)

ans =

-1.2274

where the second invocation of fzero produces the same result as the first, since f

always uses the values of a and b current at the time the anonymous function was
constructed. Another approach is to construct the basic function once and for all
with

>> fun = @(x,a,b)a*sin(x)+b*exp(-x^2/2);

and then construct a wrapping anonymous function from it each time:

>> a = 1; b = 2;

>> fzero(@(x)fun(x,a,b),0)

ans =

-1.2274

>> a = 3; b = -1;

>> fzero(@(x)fun(x,a,b),0)

ans =

0.3220

184 Numerical Methods: Part I

The algorithm used by fzero—a combination of the bisection method, the secant
method, and inverse quadratic interpolation—is described in [47, Chap. 7].

11.3. Optimization

The command x = fminbnd(fun,x1,x2) attempts to find a local minimizer x of the
function of one variable specified by fun over the interval [x1, x2]. A point x is a
local minimizer of f if it minimizes f in an interval around x. In general, a function
can have many local minimizers. MATLAB does not provide a function for the
difficult problem of computing a global minimizer (one that minimizes f(x) over all
x). Example:

>> [x,fval] = fminbnd(@(x)sin(x)-cos(x),-pi,pi)

x =

-0.7854

fval =

-1.4142

As for fzero, options can be specified using a structure options set via the optimset
function. In addition to the fields used by fzero, fminbnd uses MaxFunEvals (the
maximum number of function evaluations allowed) and MaxIter (the maximum num-
ber of iterations allowed). The defaults correspond to

optimset('Display','notify','MaxFunEvals',500,'MaxIter',500,...

'TolX',1e-4,'FunValCheck','off','OutputFcn',[])

The algorithm used by fminbnd—a combination of golden section search and parabolic
interpolation—is described in [47, Chap. 8].

If you wish to maximize a function f rather than minimize it you can minimize
−f , since maxx f(x) = −minx(−f(x)).

Function fminsearch searches for a local minimum of a real function of n real
variables. The syntax is similar to fminbnd except that a starting vector rather than
an interval is supplied: x = fminsearch(fun,x0,options). The fields in options are
those supported by fminbnd plus TolFun, a termination tolerance on the function
value. Both TolX and TolFun default to 1e-4. To illustrate the use of fminsearch

we consider the quadratic function

F (x) = x21 + x22 − x1x2,

which has a minimum at x = [0 0]T . Given the function

function f = fquad(x)

f = x(1)^2 + x(2)^2 - x(1)*x(2);

we can type

>> [x,fval] = fminsearch(@fquad,ones(2,1),optimset('Disp','final'))

Optimization terminated:

the current x satisfies the termination criteria using

OPTIONS.TolX of 1.000000e-004

and F(X) satisfies the convergence criteria using

11.4 The Fast Fourier Transform 185

OPTIONS.TolFun of 1.000000e-004

x =

1.0e-004 *

-0.4582

-0.4717

fval =

2.1635e-009

Alternatively, we can define F using an anonymous function:

[x,fval] = fminsearch(@(x) x(1)^2+x(2)^2-x(1)*x(2),ones(2,1))

Function fminsearch is based on the Nelder–Mead simplex algorithm [17, Chap. 8],
[95, Sec. 8.1], [142, Sec. 10.4], a direct search method that uses function values but
not derivatives. The method can be very slow to converge, or may fail to converge to
a local minimum. However, it has the advantage of being insensitive to discontinu-
ities in the function. More sophisticated minimization functions can be found in the
Optimization Toolbox.

11.4. The Fast Fourier Transform

The discrete Fourier transform of an n-vector x is the vector y = Fnx, where Fn is
an n-by-n matrix made up of roots of unity and illustrated by

F4 =

1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 , ω = e−2πi/4.

Fn is
√
n times a unitary matrix. The fast Fourier transform (FFT) is a more efficient

way of forming y than the obvious matrix–vector multiplication. The fft function
implements the FFT and is called as y = fft(x). The efficiency of fft depends on the
value of n; prime values are bad, highly composite numbers are better, and powers
of 2 are best. A second argument can be given to fft: y = fft(x,n) causes x to be
truncated or padded with zeros to make x of length n before the FFT algorithm is
applied. The inverse FFT, x = F−1n y = n−1F ∗ny, is carried out by the ifft function:
x = ifft(y). Example:

>> y = fft([1 1 -1 -1]')

y =

0.0000 + 0.0000i

2.0000 - 2.0000i

0.0000 + 0.0000i

2.0000 + 2.0000i

>> x = ifft(y)

x =

1

1

-1

-1

186 Numerical Methods: Part I

MATLAB also implements higher-dimensional discrete Fourier transforms and
their inverses: see functions fft2, fftn, ifft2, and ifftn.

To compute FFTs MATLAB uses a package called FFTW (the “Fastest Fourier
Transform in the West”) [49]. FFTW is an example of self-adapting numerical soft-
ware [32], which tunes itself to obtain the best speed on the computational environ-
ment in which it is running. The function fftw provides control over the tuning
process; see the online documentation for details.

FFT
James W. Cooley co-authored the classic 1965 publication on the FFT [19].
In How the FFT gained acceptance [18] he gives a candid account of redis-
coveries, and prediscoveries, of the algorithm. His article begins

“The fast Fourier transform (FFT) has had a fascinating history,
filled with ironies and enigmas.”

and finishes with the following list of recommendations.

• “Prompt publication of significant achievements is essential.

• Reviews of old literature can be rewarding.

• Communication among mathematicians, numerical analysts,
and workers in a wide range of applications can be fruitful.

• Do not publish in neoclassical Latin.”

11.4 The Fast Fourier Transform 187

Table 11.1. Top ten algorithms. Left: based on The Princeton Companion to Applied
Mathematics, in decreasing order. Right: Dongarra and Sullivan’s list, in chronolog-
ical order.

2015
Newton and quasi-Newton methods
Matrix factorizations (LU, Cholesky,
QR)
Singular value decomposition, QR
and QZ algorithms
Monte-Carlo methods
Fast Fourier transform
Krylov subspace methods (conjugate
gradients, Lanczos, GMRES, minres)
JPEG
PageRank
Simplex algorithm
Kalman filter

2000
Metropolis algorithm for Monte Carlo
Simplex method for linear
programming
Krylov subspace iteration methods
The decompositional approach to
matrix computations
The Fortran optimizing compiler
QR algorithm for computing
eigenvalues
Quicksort algorithm for sorting
Fast Fourier transform
Integer relation detection
Fast multipole method

The Top Ten Algorithms
In 2000, Dongarra and Sullivan selected the “10 algorithms with the greatest
influence on the development and practice of science and engineering in the
20th century” and edited a collection of articles about them [36]. One of
us decided to see how the selected algorithms compare with the algorithms
having the most page locators in the index of The Princeton Companion
to Applied Mathematics [80], [83]. The two lists, produced 15 years apart,
are shown in Table 11.1. They are remarkably similar, agreeing in six of
their entries. Two of the entries that are only in the new list, JPEG and
PageRank, were relatively new in 2000, having been developed in 1992 and
1998, respectively.

Life as we know it would be very different without the FFT.

— CHARLES F. VAN LOAN, Computational

Frameworks for the Fast Fourier Transform (1992)

Do you ever want to kick the computer?

Does it iterate endlessly on your newest algorithm

that should have converged in three iterations?

And does it finally come to a crashing halt

with the insulting message that you divided by zero?

These minor trauma are, in fact,

the ways the computer manages to kick you and,

unfortunately, you almost always deserve it!

For it is a sad fact that most of us

can more easily compute than think—

which might have given rise to that famous definition,

“Research is when you don’t know what you’re doing.”

— FORMAN S. ACTON, Numerical Methods That Work (1970)

Chapter 12

Numerical Methods: Part II

We now move on to describe the capabilities of MATLAB for evaluating integrals and
solving ordinary differential equations (both initial-value problems and boundary-
value problems), delay-differential equations, and partial differential equations.

Most of the solvers discussed in this chapter support mixed absolute/relative error
tests, with tolerances AbsTol and RelTol, respectively. This means that they test
whether an estimate err of some measure of the error in the vector x is small enough
by testing whether, for all i,

err(i) <= max(AbsTol,RelTol*abs(x(i)))

If AbsTol is zero this is a pure relative error test, and if RelTol is zero it is a
pure absolute error test. Since we cannot expect to obtain an answer with more
correct significant digits than the 16 or so to which MATLAB works, RelTol should
be no smaller than about eps; and since x = 0 is a possibility we should also take
AbsTol > 0. A rough way of interpreting the mixed error test above is that err(i)

is acceptably small if x(i) has as many correct digits as specified by RelTol or is
smaller than AbsTol in absolute value. The default values are listed in Table 12.1.
AbsTol can be a vector of absolute tolerances, in which case the test is

err(i) <= max(AbsTol(i),RelTol*abs(x(i)))

Several of the functions described in this chapter employ structures as input and
output arguments, in order to group several related pieces of information in one
variable. See Section 18.7 for full details of structures.

12.1. Numerical Integration

Numerical integration is the approximation of definite integrals
∫ b
a
f(x) dx. The main

MATLAB function for numerical integration is integral. The basic usage is q =

integral(fun,a,b,tol), where fun specifies the function to be integrated. The
function fun must accept a vector argument and return a vector of function val-
ues. The argument tol is an absolute error tolerance, which defaults to 10−6. To
approximate

∫ 4

2
x log x dx we can type

Table 12.1. Default values for absolute and relative error tolerances.

Numerical integration Differential equations
AbsTol 1e-10 1e-6
RelTol 1e-6 1e-3

189

190 Numerical Methods: Part II

>> integral(@(x)x.*log(x),2,4)

ans =

6.7041

Note the use of array multiplication (.*) to make the anonymous function work for
vector inputs. The default absolute and relative error tolerances, given in Table 12.1,
may be changed by providing name–value pairs, as in the next example:

>> f = @(x)sqrt(1 + cos(x).^2); a = 0; b = 48;

>> integral(f,a,b), integral(f,a,b,'Abstol',0,'Reltol',1e-14)

ans =

58.470469154905132

ans =

58.470469154899320

These two results are correct to about 13 and 16 significant figures, respectively, which
is better than the error tolerances would lead us to suspect.

The function integral has a number of other features.

• It can handle infinite a or b and endpoint singularities.

• For scalar integrands the function fun must accept a vector argument and return
a vector output. If the name–value pair 'ArrayValued',true is supplied then
the integrand is assumed to return an array (vector, matrix, or multidimensional
array) for scalar inputs. This is intended for integrating array functions.

• Integration waypoints—points at which the integrand must be evaluated—can
be specified as a pair 'Waypoints',v, where v is a vector of real or complex
numbers. If the function or its derivative has discontinuities on the interval of
integration then it is helpful to take these as waypoints.

• The limits of integration and the waypoints can be complex numbers, in which
case the integration is performed over a sequence of straight-line paths in the
complex plane.

Here are some examples of these features. The first example uses the ArrayValued
option.

>> f = @(x)([cos(x).^2, sin(x).^2]); a = 0; b = 1/3;

>> q = integral(f,a,b,'ArrayValued',true); % Integrate the vector f.

>> sum(q) - (b - a) % Should be zero.

ans =

5.5511e-17

The next example uses waypoints to speed up the evaluation of an integral with
discontinuities in the derivative of the integrand:

>> format long

>> f = @(x)(abs(x-1/sqrt(3)) + abs(x-1/sqrt(2))); a = -1; b = 2;

>> tic, q = integral(f,a,b,'RelTol',1e-12), toc

q =

4.548876283013526

Elapsed time is 0.004175 seconds.

12.1 Numerical Integration 191

>> tic, q = integral(f,a,b,'RelTol',1e-12,...

'Waypoints',[1/sqrt(3),1/sqrt(2)]), toc

q =

4.548876282957160

Elapsed time is 0.001549 seconds.

The final example is a complex integral. We specify equal starting and ending points
1 for the integration, with the waypoints directing the integration along the edges of
the unit square centered on the origin. Cauchy’s residue theorem tells us that the
result should be 2πi:

>> integral(@(z) cos(z)./z,1,1,'Waypoints',[1+i,-1+i,-1-i,1-i])

ans =

0.0000 + 6.2832i

If the integrand has singularities on the range of integration it is recommended
to split the range into subintervals so that the singularities appear at the ends of the
subintervals, then integrate separately over each subinterval, and add the results.

It should be kept in mind that a variety of analytic approaches are available to
convert an integral over an infinite range to one over a finite range or to remove
singularities. These include change of variable, integration by parts, and analytic
treatment of the integral over part of the range. See numerical analysis textbooks for
details, for example, [7, Sec. 5.6], [23, Sec. 7.4.3], and [151, Sec. 5.4].

The integral function uses global adaptive quadrature based on a Gauss–Kronrod
(7, 15) pair of integration rules. It breaks the range of integration into subintervals
and applies the basic integration rule over each subinterval. It chooses the subinter-
vals according to the local behavior of the integrand, placing the smallest ones where
the integrand is changing most rapidly. Warning messages are produced if the subin-
tervals become very small or if an excessive number of function evaluations is used,
either of which could indicate that the integrand has a singularity.

Functions quad, based on Simpson’s rule, and quadl, based on the 4-point Gauss–
Lobatto rule together with a 7-point Kronrod extension, were for many years the
main MATLAB functions for numerical integration, but they have been superseded
and are marked as “will be removed in a future release”. Function quadgk has a very
similar specification to integral but lacks the ArrayValued option. See [128] for
some historical perspective on the quad* functions.

For another example we take the Fresnel integrals

x(t) =

∫ t

0

cosu2 du, y(t) =

∫ t

0

sinu2 du.

Plotting x(t) against y(t) produces a spiral [60, Sec. 2.6]. The following code plots
the spiral by sampling at 2001 equally spaced points t on the interval [−4π, 4π]; the
result is shown in Figure 12.1. For efficiency we exploit symmetry and avoid repeatedly
integrating from 0 to t by integrating over each subinterval and then evaluating the
cumulative sums using cumsum:

n = 1000;

x = zeros(1,n); y = x;

t = linspace(0,4*pi,n+1);

for i = 1:n

192 Numerical Methods: Part II

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 12.1. Fresnel spiral.

x(i) = integral(@(x)cos(x.^2),t(i),t(i+1));

y(i) = integral(@(x)sin(x.^2),t(i),t(i+1));

end

x = cumsum(x); y = cumsum(y);

plot([-x(end:-1:1) 0 x], [-y(end:-1:1) 0 y],'LineWidth',1)

axis equal

Another numerical integration function is trapz, which applies the repeated trapez-
ium rule. It differs from integral in that its input comprises vectors of xi- and
f(xi)-values rather than a function representing the integrand f ; therefore it is not
adaptive. Example:

>> x = linspace(0,2*pi,10);

>> f = sin(x).^2./sqrt(1+cos(x).^2);

>> trapz(x,f)

ans =

2.8478

In this example the error in the computed integral is of the order 10−7, which is
much smaller than the standard error expression for the repeated trapezium rule
would suggest. The reason is that we are integrating a periodic function over a whole
number of periods and the repeated trapezium rule is known to be highly accurate
in this situation [7, Sec. 5.4], [151, p. 182], [168]. In general, though, provided that
a function is available to evaluate the integrand at arbitrary points, integral and
quadgk are preferable to trapz.

Double integrals can be evaluated with integral2. To illustrate, suppose we wish
to approximate the integral∫ 6

4

∫ 1

0

(
y2ex + x cos y

)
dx dy.

12.2 Ordinary Differential Equations 193

We type

>> integral2(@(x,y)(y.^2.*exp(x) + x.*cos(y)),0,1,4,6)

ans =

87.2983

The function passed to dblquad must accept a vector x and a scalar y and return
a vector as output. Additional arguments to dblquad can be used to specify the
tolerance and the method of integration.

An analogous function integral3 evaluates triple integrals.

12.2. Ordinary Differential Equations

MATLAB has a range of functions for solving initial-value ordinary differential equa-
tions (ODEs). These mathematical problems have the form

d

dt
y(t) = f(t, y(t)), y(t0) = y0, (12.1)

where t is a real scalar, y(t) is an unknown m-vector, and the given function f
of t and y is also an m-vector. To be concrete, we regard t as representing time.
The function f defines the ODE, and the initial condition y(t0) = y0 then defines
an initial-value problem. The simplest way to solve such a problem is to write a
function that evaluates f and then calls one of the MATLAB ODE solvers. The
minimum information that the solver must be given is the function name, the range
of t-values over which the solution is required, and the initial condition y0. However,
the MATLAB ODE solvers allow for extra (optional) input and output arguments
that make it possible to specify more about the mathematical problem and how it is
to be solved. Each of the solvers is designed to be efficient in specific circumstances,
but all are essentially interchangeable. In the next subsection we develop examples
that illustrate the use of ode45. This function implements an adaptive Runge–Kutta
algorithm and is typically the most efficient solver for the classes of ODEs that concern
MATLAB users. The full range of ODE solving functions is discussed in Section 12.2.3
and is listed in Table 12.2 on p. 208. The functions follow a naming convention: all
names begin ode and are followed by digits denoting the orders of the underlying
integration formulas, with a final “s”, “t”, or “tb” denoting a function intended for
stiff problems, and a final “i” denoting a function intended for fully implicit systems.

12.2.1. Examples with Ode45

In order to solve the scalar (m = 1) ODE

d

dt
y(t) = −y(t)− 5e−t sin 5t, y(0) = 1,

for 0 ≤ t ≤ 3 with ode45, we create in the file myf.m the function

function yprime = myf(t,y)

%MYF ODE example function.

% YPRIME = MYF(t,y) evaluates derivative.

yprime = -y - 5*exp(-t)*sin(5*t);

194 Numerical Methods: Part II

0 0.5 1 1.5 2 2.5 3

t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
(t

)

Figure 12.2. Scalar ODE example.

and then type

tspan = [0 3]; yzero = 1;

[t,y] = ode45(@myf,tspan,yzero);

plot(t,y,'*--')

xlabel t, ylabel y(t)

This produces the plot in Figure 12.2. (Note that here we have exploited com-
mand/function duality in setting the x- and y-axis labels—see Section 7.5.) The
input arguments to ode45 are the function myf, the 2-vector tspan that specifies the
time interval, and the initial condition yzero. Two output arguments t and y are
returned. The t-values are ordered in the range [0, 3] and y(i) approximates the solu-
tion at time t(i). So t(1) = 0 and t(end) = 3, with the points t(2:end-1) chosen
automatically by ode45 in much the same way that the adaptive quadrature routines
choose their subintervals—the points are more closely spaced in regions where the
solution is rapidly varying.

The solution to the scalar ODE above is y(t) = e−t cos 5t, so we may check the
maximum error in the ode45 approximation:

>> max(abs(y - exp(-t).*cos(5*t)))

ans =

2.8991e-04

If more than two time values are specified, then ode45 returns the solution at
these times only, suppressing any solution values that may have been computed for
intervening times:

>> tspan2 = 0:4;

>> [t2,y2] = ode45(@myf,tspan2,yzero);

>> disp([t2 y2])

12.2 Ordinary Differential Equations 195

0 1.0000

1.0000 0.1043

2.0000 -0.1136

3.0000 -0.0378

4.0000 0.0075

Requesting the solution at specific times in this way has little effect on the computa-
tional cost of the integration. A decreasing list of times is allowed, so that integration
is backward in time:

>> tspan3 = [0 -0.5 -1];

>> [t3,y3] = ode45(@myf,tspan3,yzero);

>> disp([t3 y3])

0 1.0000

-0.5000 -1.3209

-1.0000 0.7711

At any point in the (t, y)-plane the differential equation (12.1) gives the gradient of
the solution y(t). Therefore it defines a vector field (or direction field) through which
all solutions “navigate”. We can picture the vector field by plotting at each point
(t, y) an arrow whose slope is f(t, y). The following code uses the quiver function to
plot the vector field for the differential equation at the start of this section:

n = 16;

tpts = linspace(0,3,n); ypts = linspace(-1,1,n);

[t,y] = meshgrid(tpts,ypts);

pt = ones(size(y));

py = -y-5*exp(-t).*sin(5*t);

quiver(t,y,pt,py,1.5);

title('dy/dt = -y-5e^{-t}sin(5t)','FontWeight','normal')

xlabel('t'), ylabel('y','Rotation',0)

xlim([0 3.15]), ylim([-1.25 1.1]) % Tune axis limits.

The command quiver(x,y,u,v,scale) plots arrows with components (u,v) at the
locations (x,y), producing arrows whose length is scale times the 2-norm of the
[u(i),v(i)] vectors. Figure 12.3 shows the resulting graph.

Higher-order ODEs can be solved if they are first rewritten as a larger system of
first-order ODEs [56, Sec. 1.2], [148, Chap. 1]. For example, the simple pendulum
equation [161, Sec. 6.7] has the form

d2

dt2
θ(t) + sin θ(t) = 0.

Defining y1(t) = θ(t) and y2(t) = dθ(t)/dt, we may rewrite this equation as the two
first-order equations

d

dt
y1(t) = y2(t),

d

dt
y2(t) = − sin y1(t).

This information can be encoded for use by ode45 in the function pend as follows:

196 Numerical Methods: Part II

0 0.5 1 1.5 2 2.5 3

t

-1

-0.5

0

0.5

1

y

dy/dt = -y-5e
-t
sin(5t)

Figure 12.3. Vector field for scalar ODE example.

function yprime = pend(t,y)

%PEND Simple pendulum.

% yprime = PEND(t,y).

yprime = [y(2); -sin(y(1))];

The following commands compute solutions over 0 ≤ t ≤ 10 for three different initial
conditions. Since we are solving a system of m = 2 equations, in the output [t,y]

from ode45 the ith row of the matrix y approximates (y1(t), y2(t)) at time t = t(i).

tspan = [0 10];

yazero = [1; 1]; ybzero = [-5; 2]; yczero = [5; -2];

[ta,ya] = ode45(@pend,tspan,yazero);

[tb,yb] = ode45(@pend,tspan,ybzero);

[tc,yc] = ode45(@pend,tspan,yczero);

To produce phase plane plots, that is, plots of y1(t) against y2(t), we simply plot
the first column of the numerical solution against the second. The commands below
generate phase plane plots of the solutions ya, yb, and yc computed above, and
make use of quiver to superimpose a vector field. The resulting picture is shown in
Figure 12.4.

[y1,y2] = meshgrid(-5:.5:5,-3:.5:3);

Dy1Dt = y2; Dy2Dt = -sin(y1);

quiver(y1,y2,Dy1Dt,Dy2Dt)

hold on

plot(ya(:,1),ya(:,2),yb(:,1),yb(:,2),yc(:,1),yc(:,2),'LineWidth',1)

axis equal, axis([-5 5 -3 3])

xlabel y_1(t), ylabel y_2(t), hold off

12.2 Ordinary Differential Equations 197

-5 -4 -3 -2 -1 0 1 2 3 4 5

y
1
(t)

-3

-2

-1

0

1

2

3

y
2
(t

)

Figure 12.4. Pendulum phase plane solutions.

The pendulum ODE preserves energy: any solution keeps y2(t)2/2 − cos y1(t)
constant for all t. We can check that this is approximately true for yc as follows:

>> Ec = .5*yc(:,2).^2 - cos(yc(:,1));

>> max(abs(Ec(1)-Ec))

ans =

0.0263

The general form of a call to ode45 is

[t,y] = ode45(@fun,tspan,yzero,options);

The optional argument options is a structure that controls many features of the
solver and can be set via the odeset function. In our next example we create a
structure options by the assignment

options = odeset('AbsTol',1e-7,'RelTol',1e-4);

Passing this structure as an input argument to ode45 causes the absolute and relative
error tolerances to be set to 10−7 and 10−4, respectively. (The default values are
10−6 and 10−3, as given in Table 12.1; see the start of this chapter and doc odeset

for more details about the tolerances.) These tolerances apply on a local, step-by-
step, basis and it is not generally the case that the overall error is kept within these
limits. However, under reasonable assumptions about the ODE, it can be shown that
decreasing the tolerances by some factor, say 100, will decrease the overall error by a
similar factor, so the error is usually roughly proportional to the tolerances. See [148,
Chap. 7] for further details about error control in ODE solvers.

We now consider the Rössler system [161, Secs. 10.6, 12.3],

d

dt
y1(t) = −y2(t)− y3(t),

d

dt
y2(t) = y1(t) + ay2(t),

d

dt
y3(t) = b+ y3(t) (y1(t)− c) ,

198 Numerical Methods: Part II

Listing 12.1. Function rossler ex.

function rossler_ex

%ROSSLER_EX Run Rossler example.

tspan = [0 100]; yzero = [1; 1; 1];

options = odeset('AbsTol',1e-7,'RelTol',1e-4);

a = 0.2; b = 0.2; c = 2.5;

[t,y] = ode45(@rossler,tspan,yzero,options);

subplot(221), plot3(y(:,1),y(:,2),y(:,3)), mytitle, zlabel y_3(t), grid

subplot(223), plot(y(:,1),y(:,2)), mytitle

c = 5;

[t,y] = ode45(@rossler,tspan,yzero,options);

a = get(groot,'defaultAxesColorOrder'); c2 = {'Color',a(2,:)};

subplot(222), plot3(y(:,1),y(:,2),y(:,3),c2{:})

mytitle, zlabel y_3(t), grid

subplot(224), plot(y(:,1),y(:,2),c2{:}), mytitle

% ------------------------ Nested functions ----------------------

function yprime = rossler(t,y)

%ROSSLER Rossler system, parameterized.

yprime = [-y(2)-y(3); y(1)+a*y(2); b+y(3)*(y(1)-c)];

end

function mytitle

title(sprintf('c = %2.1f',c))

xlabel y_1(t), ylabel y_2(t)

end

end

where a, b, and c are parameters. The function rossler ex in Listing 12.1 solves
the Rössler system over 0 ≤ t ≤ 100 with initial condition y(0) = [1 1 1]T for
(a, b, c) = (0.2, 0.2, 2.5) and (a, b, c) = (0.2, 0.2, 5). The ODE is defined in the nested
function rossler, in order that the parameters a, b, and c, defined in the main
function, are captured in the function handle @rossler that is passed to ode45. The
nested function mytitle is used to avoid repetition of title commands. For more on
nested functions, see Section 10.7. Figure 12.5 shows the results. The 221 subplot
gives the 3D phase space solution for c = 2.5 and the 223 subplot gives the 2D
projection onto the (y1, y2)-plane. The 222 and 224 subplots give the corresponding
pictures for c = 5.

Function rossler ex illustrates how a complete problem specification and solution
can be encapsulated in a single function (which does not need to have any input or
output arguments) by making use of nested functions, local functions, and function
handles. (Note that nested functions are needed only when the ODE is parameter
dependent.)

The ODE solvers may also be called with a single output argument. Specifying

12.2 Ordinary Differential Equations 199

0
5

2

5

y
3
(t

)

c = 2.5

y
2
(t)

0

y
1
(t)

4

0
-5 -5

-5 0 5

y
1
(t)

-5

0

5

y
2
(t

)

c = 2.5

0
10

10

20

y
3
(t

)

c = 5.0

y
2
(t)

0

y
1
(t)

20

0
-10 -20

-10 0 10 20

y
1
(t)

-10

-5

0

5

10

y
2
(t

)

c = 5.0

Figure 12.5. Rössler system phase space solutions.

sol = ode45(@fun,tspan,yzero,options);

causes the solution to be returned in a structure sol. The fields sol.x and sol.y

are equivalent to the output arguments t and y, respectively, that arise from the call
[t,y] = ode45(@fun,tspan,yzero,options). Hence, the field sol.x is a row vector
containing the t-values chosen by ode45, and the field sol.y is an array whose ith
column sol.y(:,i) contains the solution at the points sol.x(i). A utility function
deval is available that, given sol, will evaluate the solution (and, optionally, the
derivative) at any set of intermediate t values. So, if trange is a vector of points
between sol.x(1) and sol.x(end), then ysol = deval(sol,trange) will return an
array ysol whose ith column corresponds to the solution at trange(i). Adding a
third input argument, ysol = deval(sol,trange,idx), restricts the output to solu-
tion components specified by the array idx. For example, deval(sol,trange,[1,3])
picks out the first and third solution components. We may add a second output argu-
ment: [ysol,ypsol] = deval(sol,trange,idx) returns an array ypsol containing
the corresponding approximations to the first derivative of the solution.

The use of the name sol.x, rather than sol.t, for the array containing values of
the independent variable arose because the structure output format was first intro-
duced with the boundary-value problem solver, bvp4c (see Section 12.3).

To illustrate the use of deval, we look at the task of plotting y1(t) against y1(t−τ),
for some fixed τ . This operation arises in attractor reconstruction [161, Sec. 12.4],
where an attempt is made to recover dynamics in complete phase space from a single
solution component. Using the [t,y] = ode45(...) mode would be inconvenient in
this case, because if a point t? appears in the array t it is not generally true that
t?− τ also appears. The function rossler ex2 in Listing 12.2 uses two calls to deval

and produces Figure 12.6.

200 Numerical Methods: Part II

Listing 12.2. Function rossler attract2.

function rossler_attract

%ROSSLER_ATTRACT Attractor reconstruction for Rossler system.

tspan = [0 100]; yzero = [1; 1; 1];

options = odeset('AbsTol',1e-7,'RelTol',1e-4);

a = 0.2; b = 0.2; c = 2.5;

sol = ode45(@rossler,tspan,yzero,options);

tau = 1.5;

t = linspace(tau,100,1000);

y = deval(sol,t,1);

ylag = deval(sol,t-tau,1);

plot(y,ylag), title('\tau = 1.5','FontSize',14)

xlabel('y_1(t)','FontSize',14)

ylabel('y_1(t-\tau)','FontSize',14,'Rotation',0,...

'HorizontalAlignment','right')

function yprime = rossler(t,y)

%ROSSLER Rossler system, parametrized.

yprime = [-y(2)-y(3); y(1)+a*y(2); b+y(3)*(y(1)-c)];

end

end

-4 -3 -2 -1 0 1 2 3 4 5

y
1
(t)

-4

-3

-2

-1

0

1

2

3

4

5

y
1
(t-τ)

τ = 1.5

Figure 12.6. Attractor reconstruction using deval.

12.2 Ordinary Differential Equations 201

12.2.2. Case Study: Pursuit Problem with Event Location

Next we consider a pursuit problem [24, Chap. 5]. Suppose that a rabbit follows a
predefined path (r1(t), r2(t)) in the plane and that a fox chases the rabbit in such a
way that (a) at each moment the tangent of the fox’s path points toward the rabbit
and (b) the speed of the fox is some constant k times the speed of the rabbit. Then
the path (y1(t), y2(t)) of the fox is determined by the ODE

d

dt
y1(t) = s(t) (r1(t)− y1(t)) ,

d

dt
y2(t) = s(t) (r2(t)− y2(t)) ,

where

s(t) =
k

√(
d
dtr1(t)

)2
+
(

d
dtr2(t)

)2√
(r1(t)− y1(t))

2
+ (r2(t)− y2(t))

2
.

Note that this ODE system becomes ill-defined if the fox approaches the rabbit. We
let the rabbit follow an outward spiral,[

r1(t)
r2(t)

]
=
√

1 + t

[
cos t
sin t

]
,

and start the fox at y1(0) = 3, y2(0) = 0. The function fox1 in Listing 12.3 imple-
ments the ODE, with k set to 0.75. The error function (see Section 14.1) has been
used so that execution terminates with an error message if the denominator of s(t)
in the ODE becomes too small. The script below calls fox1 to produce Figure 12.7.
Initial conditions are denoted by circles, and the dashed and solid lines show the phase
plane paths of the rabbit and the fox, respectively:

tspan = [0 10]; yzero = [3; 0];

LW = 'LineWidth';

[tfox,yfox] = ode45(@fox1,tspan,yzero);

plot(yfox(:,1),yfox(:,2),LW,1.5), hold on

plot(sqrt(1+tfox).*cos(tfox),sqrt(1+tfox).*sin(tfox),'--',LW,1.5)

plot([3 1],[0 0],'o','MarkerFaceColor','k');

axis equal, axis([-3.5 3.5 -2.5 3.1])

legend('Fox','Rabbit'), hold off

The implementation above is unsatisfactory for k > 1, that is, when the fox is
faster than the rabbit. In this case, if the rabbit is caught within the specified time
interval then no solution is displayed. It would be more natural to ask ode45 to return
with the computed solution if the fox and rabbit become close. Function fox rabbit

in Listing 12.4 does this by using the ODE solvers’ event location facility, producing
Figure 12.8. We have allowed k to be a parameter and set k = 1.1. The initial
condition and the rabbit’s path are as for Figure 12.7.

We use odeset to set the event location property to the handle of the local func-
tion fox2 events. This function has the three output arguments value, isterminal,
and direction. It is the responsibility of ode45 to use fox2 events to check whether
any component passes through zero by monitoring the quantity returned in value. In
our example value is a scalar, corresponding to the distance between the rabbit and
the fox, minus a threshold of 10−4. Hence, ode45 checks if the fox has approached

202 Numerical Methods: Part II

Listing 12.3. Function fox1.

function yprime = fox1(t,y)

%FOX1 Fox-rabbit pursuit simulation.

% yprime = FOX1(t,y).

k = 0.75;

r = sqrt(1+t)*[cos(t); sin(t)];

r_p =(0.5/sqrt(1+t))*[cos(t)-2*(1+t)*sin(t);sin(t)+2*(1+t)*cos(t)];

dist = norm(r-y);

if dist > 1e-4

factor = k*norm(r_p)/dist;

yprime = factor*(r-y);

else

error('ODE model ill-defined.')

end

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

Fox

Rabbit

Figure 12.7. Pursuit example.

12.2 Ordinary Differential Equations 203

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

Fox

Rabbit

Figure 12.8. Pursuit example, with capture.

within distance 10−4 of the rabbit. We set direction = -1, which signifies that value
must be decreasing through zero in order for the event to be considered. The alter-
native choice direction = 1 tells MATLAB to consider only crossings where value is
increasing, and direction = 0 allows for any type of zero. Since we set isterminal

= 1, integration will cease when a suitable zero crossing is detected. With the other
option, isterminal = 0, the event is recorded and the integration continues.

The output arguments from ode45 are [tfox,yfox,te,ye,ie]. Here, tfox and
yfox are the usual solution approximations, so yfox(i,:) approximates y(t) at time
t = tfox(i). The arguments te and ye record those t and y values at which the
event(s) were recorded and, for vector-valued events, ie specifies which component
of the event occurred each time. (If no events are detected then te, ye, and ie are
returned as empty matrices.) In our example, we have

>> te, ye

te =

5.0710

ye =

0.8646 -2.3073

showing that the rabbit was captured after 5.07 time units at the point (0.86,−2.31).

204 Numerical Methods: Part II

Listing 12.4. Function fox rabbit.

function fox_rabbit

%FOX_RABBIT Fox-rabbit pursuit simulation.

% Uses relative speed parameter, k.

k = 1.1;

tspan = [0 10]; yzero = [3; 0];

options = odeset('RelTol',1e-6,'AbsTol',1e-6,'Events',@fox2_events);

[tfox,yfox,te,ye,ie] = ode45(@fox2,tspan,yzero,options);

LW = 'LineWidth';

plot(yfox(:,1),yfox(:,2),LW,1.5), hold on

plot(sqrt(1+tfox).*cos(tfox),sqrt(1+tfox).*sin(tfox),'--',LW,1.5)

plot([3 1],[0 0],'o','MarkerFaceColor','k')

plot(yfox(end,1),yfox(end,2),'*')

axis equal, axis([-3.5 3.5 -2.5 3.1])

legend('Fox','Rabbit'), hold off

function yprime = fox2(t,y)

%FOX2 Fox-rabbit pursuit simulation ODE.

r = sqrt(1+t)*[cos(t); sin(t)];

r_p = (0.5/sqrt(1+t)) * [cos(t)-2*(1+t)*sin(t); sin(t)+2*(1+t)*cos(t)];

dist = max(norm(r-y),1e-6);

factor = k*norm(r_p)/dist;

yprime = factor*(r-y);

end

end

function [value,isterminal,direction] = fox2_events(t,y)

%FOX2_EVENTS Events function for fox2.

% Locate when fox is close to rabbit.

r = sqrt(1+t)*[cos(t); sin(t)];

value = norm(r-y) - 1e-4; % Fox close to rabbit.

isterminal = 1; % Stop integration.

direction = -1; % Value must be decreasing through zero.

end

12.2 Ordinary Differential Equations 205

12.2.3. Stiff Problems, Differential-Algebraic Equations, and the Choice
of Solver

The Robertson ODE system

d

dt
y1(t) = −0.04y1(t) + 104y2(t)y3(t),

d

dt
y2(t) = 0.04y1(t)− 104y2(t)y3(t)− 3× 107y2(t)2,

d

dt
y3(t) = 3× 107y2(t)2

models a reaction between three chemicals [61, p. 3], [148, p. 418]. We set the system
up as the function chem:

function yprime = chem(t,y)

%CHEM Robertson's chemical reaction model.

% yprime = CHEM(t,y).

yprime = [-0.04*y(1) + 1e4*y(2)*y(3);

0.04*y(1) - 1e4*y(2)*y(3) - 3e7*y(2)^2;

3e7*y(2)^2];

The script file below solves this ODE for 0 ≤ t ≤ 3 with initial condition [1; 0; 0],
first using ode45 and then using another solver, ode15s, which is based on implicit
linear multistep methods. (Implicit means that a nonlinear algebraic equation must
be solved at each step.) The results for y2(t) are plotted in Figure 12.9.

tspan = [0 3]; yzero = [1; 0; 0];

[ta,ya] = ode45(@chem,tspan,yzero);

subplot(121), plot(ta,ya(:,2),'-*')

ax = axis; ax(1) = -0.2; axis(ax) % Make initial transient clearer.

xlabel('t'), ylabel('y_2(t)','Rotation',0), title('ode45')

[tb,yb] = ode15s(@chem,tspan,yzero);

subplot(122), plot(tb,yb(:,2),'-*'), axis(ax)

xlabel('t'), ylabel('y_2(t)','Rotation',0), title('ode15s')

We see from Figure 12.9 that the solutions agree to within a small absolute toler-
ance (note the scale factor 10−5 for the y-axis labels). However, the left-hand solution
from ode45 has been returned at many more time values than the right-hand solution
from ode15s and seems to be less smooth. To emphasize these points, Figure 12.10
plots ode45’s y2(t) for 2.0 ≤ t ≤ 2.1. We see that the t-values are densely packed,
and spurious oscillations are present at the level of the default absolute error toler-
ance, 10−6. The Robertson problem is a classic example of a stiff ODE; see [61] or
[148, Chap. 8] for full discussions about stiffness and its effects. Stiff ODEs arise
in a number of application areas, including the modeling of chemical reactions and
electrical circuits. Semi-discretized time-dependent partial differential equations are
also a common source of stiffness (we give an example below). Many solvers behave
inefficiently on stiff ODEs: they take an unnecessarily large number of intermediate
steps in order to complete the integration and hence make an unnecessarily large
number of calls to the ODE function (in this case, chem). We can obtain statistics on
the computational cost of the integration by setting

options = odeset('Stats','on');

206 Numerical Methods: Part II

0 1 2 3

t

0

0.5

1

1.5

2

2.5

3

3.5

4

y
2
(t)

×10
-5 ode45

0 1 2 3

t

0

0.5

1

1.5

2

2.5

3

3.5

4

y
2
(t)

×10
-5 ode15s

Figure 12.9. Chemical reaction solutions. Left: ode45. Right: ode15s.

2 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.1

t

2.55

2.6

2.65

2.7

2.75

2.8

2.85

y
2
(t)

×10
-5

Figure 12.10. Zoom of chemical reaction solution from ode45.

12.2 Ordinary Differential Equations 207

and providing options as an input argument:

[ta,ya] = ode45(@chem,tspan,yzero,options);

On completion of the run of ode45, the following statistics are then printed:

2052 successful steps

440 failed attempts

14953 function evaluations

Using the same options argument with ode15s gives

33 successful steps

5 failed attempts

73 function evaluations

2 partial derivatives

13 LU decompositions

63 solutions of linear systems

The behavior of ode45 typifies what happens when an adaptive algorithm designed for
nonstiff ODEs operates in the presence of stiffness. The solver does not break down
or compute an inaccurate solution, but it does behave nonsmoothly and extremely
inefficiently in comparison with solvers that are customized for stiff problems. This
is one reason why MATLAB provides a suite of ODE solvers.

Note that in the computation above, we have

>> disp([length(ta), length(tb)])

8209 34

showing that ode45 returned output at almost 250 times as many points as ode15s.
However, the statistics show that ode45 took 2051 steps, only about 62 times as
many as ode15s. The explanation is that by default ode45 uses interpolation to
return four solution values at equally spaced points over each “natural” step. The
default interpolation level can be overridden via the Refine option with odeset.

A full list of the MATLAB ODE solvers is given in Table 12.2. The authors of
these solvers, Shampine and Reichelt, discuss some of the theoretical and practical
issues that arose during their development in [154]. The functions are designed to
be interchangeable in basic use. So, for example, the illustrations in the previous
subsection continue to work if ode45 is replaced by any of the other solvers. The
functions mainly differ in (a) their efficiency on different problem types and (b) their
capacity for accepting information about the problem in connection with Jacobians
and mass matrices. With regard to efficiency, Shampine and Reichelt write in [154]:

The experiments reported here and others we have made suggest that
except in special circumstances, ode45 should be the code tried first. If
there is reason to believe the problem to be stiff, or if the problem turns
out to be unexpectedly difficult for ode45, the ode15s code should be
tried.

The stiff solvers in Table 12.2 use information about the Jacobian matrix, ∂fi/∂yj ,
at various points along the solution. By default, they automatically generate approx-
imate Jacobians using finite differences. An option can be set via odeset to specify
the sparsity pattern of the Jacobian, which aids construction of the finite difference

208 Numerical Methods: Part II

Table 12.2. The MATLAB ODE solvers.

Solver Problem type Type of algorithm
ode45 Nonstiff Explicit Runge–Kutta pair, orders 4 and 5
ode23 Nonstiff Explicit Runge–Kutta pair, orders 2 and 3
ode113 Nonstiff Explicit linear multistep, orders 1–13
ode15s Stiff Implicit linear multistep, orders 1–5
ode15i Fully implicit Implicit linear multistep, orders 1–5
ode23s Stiff Modified Rosenbrock pair (one-step), orders 2 and 3
ode23t Mildly stiff Trapezoidal rule (implicit), orders 2 and 3
ode23tb Stiff Implicit Runge–Kutta-type algorithm, orders 2 and 3

approximation. However, the reliability and efficiency of the solvers is generally im-
proved if a function that evaluates the Jacobian is supplied.

To illustrate how Jacobian information can be encoded, we look at the system of
ODEs

d

dt
y(t) = Ay(t) + y(t). ∗ (1− y(t)) + v,

where A is N -by-N and v is N -by-1 with

A = r1

0 1
−1 0 1

. . .
. . .

. . .

. . .
. . . 1
−1 0

+ r2

−2 1
1 −2 1

. . .
. . .

. . .

. . .
. . . 1
1 −2

 ,

v = [r2 − r1, 0, . . . , 0, r2 + r1]T , r1 = −a/(2∆x), and r2 = b/∆x2. Here, a, b, and
∆x are parameters with values a = 1, b = 5 × 10−2, and ∆x = 1/(N + 1). This
ODE system arises when the method of lines based on central differences is used to
semi-discretize the partial differential equation (PDE)

∂

∂t
u(x, t) + a

∂

∂x
u(x, t) = b

∂2

∂x2
u(x, t) + u(x, t)(1− u(x, t)), 0 ≤ x ≤ 1,

with Dirichlet boundary conditions u(0, t) = u(1, t) = 1. This PDE is of reaction–
convection–diffusion type (and could be solved directly with pdepe, described in Sec-
tion 12.5). The ODE solution component yj(t) approximates u(j∆x, t). We suppose
that the PDE comes with the initial data u(x, 0) = (1+cos 2πx)/2, for which it can be
shown that u(x, t) tends to the steady state u(x, t) ≡ 1 as t→∞. The corresponding
ODE initial condition is (y0)j = (1 + cos(2πj/(N + 1)))/2. The Jacobian for this
ODE has the form A+ I − 2 diag(y(t)), where I denotes the identity.

Listing 12.5 shows a function rcd that implements and solves this system using
ode15s. We have set N = 38 and 0 ≤ t ≤ 2. The Jacobian property of odeset

specifies the nested function jacobian that evaluates the Jacobian and that returns
it as a sparse array. See Chapter 15 for details about sparse matrices and the function
spdiags. The jth column of the output matrix y contains the approximation to yj(t),
and we have created U by appending an extra column ones(size(t)) at each end of

12.2 Ordinary Differential Equations 209

Listing 12.5. Function rcd.

function rcd

%RCD Stiff ODE from method of lines on reaction-convection-diffusion PDE.

N = 38; a = 1; b = 5e-2;

tspan = [0 2]; space = [1:N]/(N+1);

y0 = 0.5*(1+cos(2*pi*space));

y0 = y0(:);

options = odeset('Jacobian',@jacobian);

options = odeset(options,'RelTol',1e-3,'AbsTol',1e-3);

[t,y] = ode15s(@f,tspan,y0,options);

e = ones(size(t)); U = [e y e];

waterfall([0:1/(N+1):1],t,U)

colormap hsv

xlabel('space','FontSize',12), ylabel('time','FontSize',12)

% ------------------------ Nested functions -------------------------

function dydt = f(t,y)

%F Differential equation.

r1 = -a*(N+1)/2;

r2 = b*(N+1)^2;

up = [y(2:N);0]; down = [0;y(1:N-1)];

e1 = [1;zeros(N-1,1)]; eN = [zeros(N-1,1);1];

dydt = r1*(up-down) + r2*(-2*y+up+down) + (r2-r1)*e1 + ...

(r2+r1)*eN + y.*(1-y);

end

function dfdy = jacobian(t,y)

%JACOBIAN Jacobian matrix.

r1 = -a*(N+1)/2;

r2 = b*(N+1)^2;

u = (r2-r1)*ones(N,1);

v = (-2*r2+1)*ones(N,1) - 2*y;

w = (r2+r1)*ones(N,1);

dfdy = spdiags([u v w],[-1 0 1],N,N);

end

end

210 Numerical Methods: Part II

Figure 12.11. Stiff ODE example, with Jacobian information supplied.

y to account for the PDE boundary conditions. The plot produced by rcd is shown
in Figure 12.11.

The ODE solvers can be applied to problems of the form

M(t, y(t))
d

dt
y(t) = f(t, y(t)), y(t0) = y0,

where the mass matrix, M(t, y(t)), is square and nonsingular. (The ode23s solver
applies only when M is independent of t and y(t).) Mass matrices arise naturally
when semi-discretization is performed with a finite-element method. A mass matrix
can be specified in a similar manner to a Jacobian, via odeset. The ode15s and
ode23t functions can solve certain problems where M is singular—more precisely,
they can be used if the resulting differential-algebraic equation (DAE) is of index 1
and y0 is sufficiently close to being consistent. DAEs are a class of problems that
contain algebraic, as well as differential, constraints on the variables; see [5], [14], or
[109] for details.

We now discuss a DAE example: the Chemical Akzo Nobel problem of [164]. This
index-1 system has the form

M
d

dt
y(t) = f(y(t)),

with y(t) ∈ R6, 0 ≤ t ≤ 180, and

M =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 , f(y) =

−2r1 + r2 − r3 − r4

−0.5r1 − r4 − 0.5r5 + Fin

r1 − r2 + r3
− r2 + r3 − 2r4
r2 − r3 + r5
Ks y1y4 − y6

 ,

12.2 Ordinary Differential Equations 211

0 100

t

0.1

0.2

0.3

0.4

0.5

y
1

0 100

t

0

0.5

1

1.5
×10

-3 y
2

0 100

t

0

0.05

0.1

0.15

0.2

y
3

0 100

t

0

2

4

6

8
×10

-3 y
4

0 100

t

0

0.005

0.01

0.015

0.02

y
5

0 100

t

0

0.1

0.2

0.3

0.4

y
6

Figure 12.12. DAE solution components from chemakzo in Listing 12.6.

where the auxiliary variables are defined as

r1 = k1y
4
1
√
y2,

r3 = k2y1y5/K,
r5 = k4y

2
6
√
y2,

r2 = k2y3y4,
r4 = k3y1y

2
4 ,

Fin = klA (p(CO2)/H − y2) .

Constants in the system take values k1 = 18.7, k2 = 0.58, k3 = 0.09, k4 = 0.42,
K = 34.4, klA = 3.3, Ks = 115.83, p(CO2) = 0.9, and H = 737, and the initial
condition is

y0 = [0.444, 0.00123, 0, 0.007, 0, Ksy1(0)y4(0)]T .

Details about the mathematical modeling and chemistry issues behind this problem
can be found in [164].

The function chemakzo in Listing 12.6 solves this DAE using ode15s, which can
solve DAEs of index 1. We use odeset to set up an options structure that specifies
the mass matrix and reports it as singular. In our case, because the mass matrix M is
constant, we are able to specify it as the value of the Mass property. More generally,
for a mass matrix that depends on t and y, a suitable function, mymass(t,y), say,
must be set up and the Mass property set to @mymass.

After solving the DAE, chemakzo plots the six solution components, as shown in
Figure 12.12. These agree to visual accuracy with the solution plots in [164]. As a
further check, we compare the solution at t = 180 with the reference solution supplied
in [164] and find that the norm of the difference is yerr = 2.0626e-6.

The solver ode15i is designed to handle general index-1 DAEs that may be written
in the fully implicit form

F

(
t, y(t),

dy(t)

dt

)
= 0,

212 Numerical Methods: Part II

Listing 12.6. Function chemakzo.

function chemakzo

%CHEMAKZO Chemical Akzo Nobel problem.

% Index 1 DAE describing a chemical process.

M = eye(6); M(6,6) = 0;

options = odeset('Mass',M,'MassSingular','yes');

tspan = [0 180];

Ks = 115.83;

y0 = [0.444; 0.00123; 0; 0.007; 0; Ks*0.444*0.007];

[t,y] = ode15s(@chem_rhs,tspan,y0,options);

for i = 1:6

subplot(2,3,i)

plot(t,y(:,i),'LineWidth',2), grid on

title(['y_',int2str(i)]), xlabel('t'), xlim([0 180])

end

% Reference solution at t = 180

yref = [0.1150794920661702; 0.1203831471567715e-2

0.1611562887407974; 0.3656156421249283e-3

0.1708010885264404e-1; 0.4873531310307455e-2]';

yerr = norm(y(end,:) - yref)

% ------------------- Nested function -------------------

function rhs = chem_rhs(t,y)

%CHEM_RHS Right-hand side of DAE

if y(2) < 0, error('Negative y(2) in DAE function.'), end

k1 = 18.7; k2 = 0.58; k3 = 0.09; k4 = 0.42;

K = 34.4; klA = 3.3; pCO2 = 0.9; H = 737;

r1 = k1*(y(1)^4)*sqrt(y(2));

r2 = k2*y(3)*y(4);

r3 = k2*y(1)*y(5)/K;

r4 = k3*y(1)*(y(4)^2);

r5 = k4*(y(6)^2)*sqrt(y(2));

Fin = klA*(pCO2/H - y(2));

rhs = [-2*r1 + r2 - r3 - r4;

-0.5*r1 - r4 - 0.5*r5 + Fin;

r1 - r2 + r3;

-r2 + r3 - 2*r4;

r2 - r3 + r5;

Ks*y(1)*y(4)-y(6)];

end

end

12.3 Boundary-Value Problems 213

where F is a given nonlinear function and suitable initial conditions are supplied. A
separate function decic is available to compute consistent initial conditions for these
problems. The reference [149] describes ode15i and decic and gives examples of
their use.

The ODE solvers offer other features that you may find useful. Type help odeset

to see the full range of properties that can be controlled through the options struc-
ture. The function odeget extracts property values from the options structure. The
MATLAB ODE solvers are well documented and are supported by a rich variety of
example files, some of which we list below. In each case, help filename gives an
informative description of the file, type filename lists the contents of the file, and
typing filename runs a demonstration. The examples can also be accessed via the
odeexamples function.

burgersode, rigidode: nonstiff ODEs.

brussode, hb1ode, kneeode, vdpode: stiff ODEs.

ballode: event location problem.

orbitode: problem involving event location and the use of an output function (odephas2)
to process the solution as the integration proceeds.

fem1ode, fem2ode, batonode: ODEs with mass matrices.

amp1dae, hb1dae, ihb1dae, iburgersode: DAEs.

Stiffness
Although ode15s has a higher computational cost per subinterval than
ode45, we saw that ode15s was much the more efficient integrator in the
Robertson stiff ODE example. Stiffness concerns the stability of numerical
methods—the way that errors propagate in time—and is a well-developed
field with a rich set of theoretical results. But most researchers agree that
it is more useful to illustrate stiffness through practical examples than
to attempt a rigorous definition. Indeed, Gear and Skeel [50] point out
that Gear—who pioneered the backward differentiation formulas used, in a
slightly modified form, by ode15s—was motivated by a concrete challenge.
In 1966 he was shown a small ODE system from chemical kinetics and told
“You people will never be able to handle these types of problems with your
digital computers.”

12.3. Boundary-Value Problems

The function bvp4c uses a collocation method to solve systems of ODEs in two-point
boundary-value form. These systems may be written

d

dx
y(x) = f(x, y(x), p), g(y(a), y(b), p) = 0.

Here, as for the initial-value problem in the previous section, y(x) is an unknown m-
vector and f is a given function of x and y that also produces an m-vector. The vector
p, which may be absent, is an unknown vector of parameters to be determined. The

214 Numerical Methods: Part II

solution is required over the range a ≤ x ≤ b and the given function g specifies the
boundary conditions. Note that the independent variable was labeled t in the previous
section and is now labeled x. This is consistent with the MATLAB documentation
and reflects the fact that two-point boundary-value problems (BVPs) usually arise
over an interval of space rather than time. Generally, BVPs are more computationally
challenging than initial-value problems. They may have no solution, and it is common
for more than one solution to exist. For these reasons, bvp4c requires an initial guess
to be supplied for the solution. The initial guess and the final solution are stored in
structures. We introduce bvp4c through a simple example before giving more details.

A scalar BVP describing the cross-sectional shape of a water droplet on a flat
surface is given by (see [141])

d2

dx2
h(x) + (1− h(x))

(
1 +

(
d

dx
h(x)

)2
)3/2

= 0, h(−1) = 0, h(1) = 0.

Here, h(x) measures the height of the droplet at point x. We set y1(x) = h(x) and
y2(x) = dh(x)/dx and rewrite the equation as a system of two first-order equations:

d

dx
y1(x) = y2(x),

d

dx
y2(x) = (y1(x)− 1)

(
1 + y2(x)2

)3/2
.

This system is represented by the function

function yprime = drop(x,y)

%DROP ODE/BVP water droplet example.

% prime = DROP(x,y) evaluates derivative.

yprime = [y(2); (y(1)-1)*((1+y(2)^2)^(3/2))];

The boundary conditions are specified via a residual function. This function returns
zero when evaluated at the boundary values. Our boundary conditions y1(−1) =
y1(1) = 0 can be encoded in the following function:

function res = dropbc(ya,yb)

%DROPBC ODE/BVP water droplet boundary conditions.

% res = DROPBC(ya,yb) evaluates residual.

res = [ya(1); yb(1)];

As an initial guess for the solution, we use y1(x) =
√

1− x2 and y2(x) = −x/(0.1 +√
1− x2). This information is set up by the function dropinit:

function yinit = dropinit(x)

%DROPINIT ODE/BVP water droplet initial guess.

% yinit = DROPINIT(x) evaluates initial guess at x.

yinit = [sqrt(1-x^2); -x/(0.1+sqrt(1+x^2))];

The following code solves the BVP and produces Figure 12.13:

12.3 Boundary-Value Problems 215

Figure 12.13. Water droplet BVP solved by bvp4c.

solinit = bvpinit(linspace(-1,1,20),@dropinit);

sol = bvp4c(@drop,@dropbc,solinit);

fill(sol.x,sol.y(1,:),[0.7 0.7 0.7])

axis([-1 1 0 1])

xlabel('x','FontSize',12)

ylabel('h','Rotation',0,'FontSize',12)

Here, the call to bvpinit sets up the structure solinit, which contains the data
produced by evaluating dropinit at 20 equally spaced values between −1 and 1. We
then call bvp4c, which returns the solution in the structure sol. The fill command
fills the curve that the solution makes in the (x, y1)-plane.

In general, bvp4c can be called in the form

sol = bvp4c(@odefun,@bcfun,solinit,options);

Here, odefun evaluates the differential equations and bcfun gives the residual for the
boundary conditions. The function odefun has the general form

yprime = odefun(x,y)

and bcfun has the general form

res = bcfun(ya,yb)

Both functions must return column vectors. The initial guess structure solinit has
two required fields: solinit.x contains the x-values at which the initial guess is
supplied, ordered from left to right with solinit.x(1) and solinit.x(end) giving
a and b, respectively. Correspondingly, solinit.y(:,i) gives the initial guess for
the solution at the point solinit.x(i). This structure also allows a guess for a
vector of unknown parameters to be specified, as we will see in function skiprun

216 Numerical Methods: Part II

below. The helper function bvpinit can be used to create the initial guess structure,
as in the example above. The remaining arguments for bvp4c are optional. The
options structure allows various properties of the collocation algorithm to be altered
from their default values, including the error tolerances and the maximum number of
meshpoints allowed. The function bvpset, which is similar to odeset, can be used to
create the required structure (see doc bvpset for details).

The output argument sol is a structure that contains the numerical solution.
The field sol.x gives the array of x-values at which the solution has been com-
puted. (These points are chosen automatically by bvp4c.) The approximate solution
at sol.x(i) is given by sol.y(:,i). Similarly, an approximate value of the first
derivative of the solution at sol.x(i) is given by sol.yp(:,i). Unlike for the ODE
solvers, the only form in which output from bvp4c can be obtained is a structure (and
the same is true for the delay-differential equations (DDE) and PDE solvers described
in the next two sections).

Note that the structures solinit and sol above can be given any names, but the
field names x, y, and yp must be used.

The function deval, described on p. 199, may be used to provide the solution and
its derivative at general x-values.

Our next example treats a differential equation depending on a parameter and
emphasizes that nonlinear BVPs can have nonunique solutions. The equation

d2

dx2
θ(x) + λ sin θ(x) cos θ(x) = 0, θ(−1) = 0, θ(1) = 0,

arises in liquid crystal theory [114]. Here, θ(x) quantifies the average local molecular
orientation, and the constant parameter λ > 0 is a measure of an applied magnetic
field. If λ is small then the only solution to this problem is the trivial one, θ(x) ≡ 0.
However, for λ > π2/4 ≈ 2.467 a solution with θ(x) > 0 for −1 < x < 1 exists, and
−θ(x) is then also a solution. (Physically, a distorted state of the material may arise
if the magnetic field is sufficiently strong.) For the positive solution the midpoint
value, θ(0), increases monotonically with λ and approaches π/2 as λ tends to infinity.
Writing y1(x) = θ(x) and y2(x) = dθ(x)/dx the ODE becomes

d

dx
y1(x) = y2(x),

d

dx
y2(x) = −λ sin y1(x) cos y1(x).

The function lcrun in Listing 12.7 solves the BVP for parameter values λ = 2.4, 2.5,
3, and 10, producing Figure 12.14. In this example, as for some of the ODE problems
in the previous section, we have written a function lcrun that has no input or output
arguments and created lc as a nested function and lcbc and lcinit as local functions
of lcrun. This allows us to solve the BVP with a single function. The nested function
lc evaluates the right-hand side of the ODE. The boundary conditions, which are the
same as those in the previous example, are coded in lcbc. Note that making lc a
nested function ensures that the parameter lambda is known to lc when it is called
by bvp4c. As an initial guess for λ = 10, we use y1(x) = sin((x + 1)π/2) and
y2(x) = π cos((x + 1)π/2)/2, which is set up by lcinit. For the remaining three
λ-values we use the solution for the previous λ as the starting guess for the next; this
is known as continuation in the parameter λ, and it is a valuable (perhaps necessary)
technique when solving hard problems. From Figure 12.14 we see that bvp4c has found

12.3 Boundary-Value Problems 217

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

1.5

θ

λ = 10

λ = 3

λ = 2.5

λ = 2.4

Figure 12.14. Liquid crystal BVP solved by bvp4c.

the nontrivial positive solution for each of the three lambda-values beyond π2/4. For
continuation to work in this example we need to take the λ-values in decreasing order;
the increasing order leads to the trivial solution each time.

Our final example involves the equation

d2

dx2
y(x) + µy(x) = 0,

with boundary conditions

y(0) = 0,

(
d

dx
y(x)

)
x=0

= 1,

(
y(x) +

d

dx
y(x)

)
x=1

= 0.

This equation models the displacement of a skipping rope that is fixed at x = 0, has
elastic support at x = 1, and rotates with uniform angular velocity about its equi-
librium position along the x-axis [85, Sec. 5.2]. This BVP is an eigenvalue problem:
we must find a value of the parameter µ for which a solution exists. (We can regard
the two conditions at x = 0 as defining an initial-value problem; we must then find
a value of µ for which the solution matches the boundary condition at x = 1.) We
can use bvp4c to solve this eigenvalue problem if we supply a guess for the unknown
parameter µ as well as a guess for the corresponding solution y(x). This is done in the
function skiprun in Listing 12.8. As a first-order system, the differential equation
may be written

d

dx
y1(x) = y2(x),

d

dx
y2(x) = −µy1(x).

This system is encoded in the local function skip and the boundary conditions in
skipbc. Our initial guess for the solution is y1(x) = sinx, y2(x) = cosx, specified in

218 Numerical Methods: Part II

Listing 12.7. Function lcrun.

function lcrun

%LCRUN Liquid crystal BVP.

% Solves the liquid crystal BVP for four different lambda values.

lambda_vals = [2.4, 2.5, 3, 10];

lambda_vals = lambda_vals(end:-1:1); % Necessary order for continuation.

solinit = bvpinit(linspace(-1,1,20),@lcinit);

lambda = lambda_vals(1); sola = bvp4c(@lc,@lcbc,solinit);

lambda = lambda_vals(2); solb = bvp4c(@lc,@lcbc,sola);

lambda = lambda_vals(3); solc = bvp4c(@lc,@lcbc,solb);

lambda = lambda_vals(4); sold = bvp4c(@lc,@lcbc,solc);

plot(sola.x,sola.y(1,:),'-', 'LineWidth',3), hold on

plot(solb.x,solb.y(1,:),'--','LineWidth',3)

plot(solc.x,solc.y(1,:),'--','LineWidth',3)

plot(sold.x,sold.y(1,:),'--','LineWidth',3), hold off

legend([repmat('\lambda = ',4,1) num2str(lambda_vals')])

xlabel('x','FontSize',12)

ylabel('\theta','Rotation',0,'FontSize',12)

ylim([-0.1 1.5])

function yprime = lc(x,y)

%LC ODE/BVP liquid crystal system.

yprime = [y(2); -lambda*sin(y(1))*cos(y(1))];

end

end

function res = lcbc(ya,yb)

%LCBC ODE/BVP liquid crystal boundary conditions.

res = [ya(1); yb(1)];

end

function yinit = lcinit(x)

%LCINIT ODE/BVP liquid crystal initial guess.

yinit = [sin(0.5*(x+1)*pi); 0.5*pi*cos(0.5*(x+1)*pi)];

end

12.3 Boundary-Value Problems 219

Listing 12.8. Function skiprun.

function sol = skiprun

%SKIPRUN Skipping rope BVP/eigenvalue example.

solinit = bvpinit(linspace(0,1,10),@skipinit,5);

sol = bvp4c(@skip,@skipbc,solinit);

plot(sol.x,sol.y(1,:),'-', sol.x,sol.yp(1,:),'--', 'LineWidth',3)

xlabel('x','FontSize',12)

legend('y_1','y_2')

% ------------------------ Local functions ------------------------

function yprime = skip(x,y,mu)

%SKIP ODE/BVP skipping rope example.

% yprime = SKIP(x,y,mu) evaluates derivative.

yprime = [y(2); -mu*y(1)];

function res = skipbc(ya,yb,mu)

%SKIPBC ODE/BVP skipping rope boundary conditions.

% res = skipbc(ya,yb,mu) evaluates residual.

res = [ya(1); ya(2)-1; yb(1)+yb(2)];

function yinit = skipinit(x)

%SKIPINIT ODE/BVP skipping rope initial guess.

% yinit = SKIPINIT(x) evaluates initial guess at X.

yinit = [sin(x); cos(x)];

skipinit. Note that the input argument 5 is added in the call to bvpinit. This is
our guess for µ, and it is stored in the parameters field of the structure solinit and
hence passed to bvp4c. Figure 12.15 shows the solution computed by bvp4c. The
computed value for µ is returned in the parameters field of the structure sol. We
have

>> sol = skiprun

sol =

x: [1×10 double]

y: [2×10 double]

yp: [2×10 double]

solver: 'bvp4c'

parameters: 4.1159e+000

It is known that this BVP has eigenvalues given by µ = γ2, where γ is a solution of
tan γ + γ = 0. Using fzero to locate a γ-value near 2, we can check the accuracy of
the computed µ as follows:

>> gam = fzero(@(x)tan(x)+x,2); mu = gam^2;

>> error = abs(sol.parameters - mu)

error =

2.9343e-005

220 Numerical Methods: Part II

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.5

0

0.5

1

y
1

y
2

Figure 12.15. Skipping rope eigenvalue BVP solved by bvp4c.

The tutorial [98] gives a range of examples that illustrate the versatility of bvp4c.
The examples deal with a number of issues, including

• changing the error tolerances,

• evaluating the solution at any point in the range [a, b],

• choosing appropriate initial guesses by continuation,

• dealing with singularities,

• solving problems with periodic boundary conditions,

• solving problems over an infinite interval,

• solving multipoint BVPs (where non-endpoint conditions are specified for the
solution).

Further information can also be obtained from the help for the functions bvp4c,
bvpget, bvpinit, bvpval, bvpset; from [100]; and from the following example files:

twobvp: solves a BVP that has exactly two solutions;

mat4bvp: finds the fourth eigenvalue of Mathieu’s equation;

shockbvp: solves a difficult BVP with a shock layer;

threebvp: solves a three-point BVP.

The function bvp4c can also solve a class of boundary-value problems over 0 ≤
x ≤ b that have a singularity at x = 0; for details see the online help and [150].

Finally, we note that MATLAB has another function bvp5c that has the same
syntax as bvp4c but differs from it in that it controls the error in the solution rather
than the residual of the differential equation.

12.4 Delay-Differential Equations 221

12.4. Delay-Differential Equations

The function dde23 solves systems of DDEs of the form

d

dt
y(t) = f

(
t, y(t), y(t− τ1), y(t− τ2), . . . , y(t− τk)

)
for t > t0, where τ1, τ2, . . . , τk are positive constants known as delays or lags. DDEs
differ from ODEs in that the right-hand side function, f , depends on the solution
value at earlier points t − τi as well as at the current point t. Instead of an initial
condition, an initial function, S(t), must be specified such that y(t) = S(t) for t ≤ t0.
Using dde23 is similar to using one of the MATLAB ODE solvers in the mode where
the solution is returned as a structure.

A DDE system for predator–prey populations is [119, (3.11)]

d

dt
y1(t) = y1(t)

(
2

(
1− y1(t)

50

)
− y2(t)

y1(t) + 40

)
− h,

d

dt
y2(t) = y2(t)

(
−3 +

6y1(t− τ)

y1(t− τ) + 40

)
.

Here, y1(t) and y2(t) denote the densities of the prey and predator populations, re-
spectively, at time t. The delay parameter τ accounts for either (a) a gestation period
in the predators or (b) a reaction time in the predators, and the parameter h repre-
sents a harvesting rate for the prey. We will take τ = 9, a constant initial function
S(t) = [35, 10]T , and try two different harvesting rates, h = 10 and h = 15. The
analysis and computation in [119] show that for h = 15 the solution should evolve to
the equilibrium state y1(t) ≡ 40, y2(t) ≡ 2, whereas for h = 10 a limit cycle is present.

This DDE is solved for h = 10 and h = 15 by function harvest in Listing 12.9,
which produces the pictures in Figure 12.16. The first two input arguments for dde23
are @f, the handle of the function that evaluates the right-hand side of the DDE, and
tau, which specifies the size of the delay. In general, tau is a k-vector when there are
k lags. Next, ic = [35;10] specifies the initial function to be a constant. The vector
tspan gives the range for the independent variable. In the nested function f, Z is a
column vector that represents y(t− τ).

As for the ODE solvers, the output argument sol is a structure, with the field
sol.x giving an array of t-values for which the field sol.y is a corresponding array
of solution values. A third field, sol.yp, provides the first derivative of the solution.
Figure 12.16 confirms the expected difference in behavior between h = 10 and h = 15.

A general call to dde23 takes the form

sol = dde23(@ddefun,delays,history,tspan,options);

The function ddefun has input arguments (t,y,Z) and returns a column vector giving
the right-hand side of the DDE. The input argument Z is an array whose jth column
corresponds to y(t − τj). The second input argument to dde23, delays, is a row
vector that defines the delays; so delays(j) is τj . Any number of distinct, positive
delays may be used. (It is possible to use dde23 to solve an ODE system—that is,
a DDE with no delays. In this case it is best to pass the empty array [] as the
delay argument.) The function history has input argument t and returns the value
S(t) as a column vector. As we saw in the example above, in the commonly arising
case where the initial function is constant it is permissible to supply a vector as the
history argument, rather than a function name. The input argument tspan is used

222 Numerical Methods: Part II

Listing 12.9. Function harvest.

function harvest

%HARVEST Predator-prey model with delay and harvesting.

tau = 9;

ic = [35; 10];

tspan = [0 250];

h = 10;

sol = dde23(@f,tau,ic,tspan);

subplot(2,1,1)

plot(sol.x,sol.y(1,:),'r-', sol.x,sol.y(2,:),'b--', 'LineWidth',2)

legend('y_1','y_2','Location','East')

title('h = 10'), xlabel t, ylabel('y','Rotation',0)

h = 15;

sol = dde23(@f,tau,ic,tspan);

subplot(2,1,2)

plot(sol.x,sol.y(1,:),'r-', sol.x,sol.y(2,:),'b--', 'LineWidth',2)

legend('y_1','y_2','Location','East')

title('h = 15'), xlabel t, ylabel('y','Rotation',0)

function v = f(t,y,Z)

%F Harvest differential equation.

v = [y(1)*(2*(1-y(1)/50) - y(2)/(y(1)+40)) - h

y(2)*(-3 + 6*Z(1)/(Z(1)+40))];

end

end

12.4 Delay-Differential Equations 223

0 50 100 150 200 250

t

0

20

40

60

y

h = 10

y
1

y
2

0 50 100 150 200 250

t

0

20

40

60

y

h = 15

y
1

y
2

Figure 12.16. Predator–prey model with delay and harvesting.

to specify the points at which a solution is required. It has similar functionality to the
corresponding argument of the ODE solvers. Similarly, the options argument, which
may be set by calls to ddeset, allows error tolerances and event location requirements
to be specified, as in the ODE case. Additionally, points where low-order derivatives
of the solution are known to have discontinuities may be specified via options. Such
information may improve the accuracy and efficiency of dde23.

As in the ODE case described on p. 198, the output argument sol may be fed
into the function deval in order to evaluate the solution and its derivative at specified
t-values.

Our second DDE system example is

d

dt
y1(t) = −y1(t) + 2 tanh(y2(t− τ2)),

d

dt
y2(t) = −y2(t)− 1.5 tanh(y1(t− τ1)),

which models a network of two neurons. Using an initial function of the form S(t) =
0.1(sin(t/10), cos(t/10))T , we will examine two pairs of delays: first τ1 = 0.2 and
τ2 = 0.5 and then τ1 = 0.325 and τ2 = 0.525. In the first case, the system should
damp down to zero and in the second case a limit cycle should be apparent (see [181]
for details). This DDE is solved by the script neural in Listing 12.10, which produces
Figure 12.17. Notice that neural is a script containing local functions, in contrast to
the earlier codes in this chapter.

The tutorial [99] discusses dde23 more comprehensively and provides download-
able code that illustrates its use, including examples that require event location and
discontinuity handling. The theory and algorithmics behind dde23 are covered in
[152] and [155].

MATLAB also has two other functions for solving DDEs: ddesd solves equations

224 Numerical Methods: Part II

Listing 12.10. Script neural.

%NEURAL Neural network model with delays.

tspan = [0 40];

sol = dde23(@f,[0.2,0.5],@history,tspan);

subplot(2,2,1)

plot(sol.x,sol.y(1,:),'r-', sol.x,sol.y(2,:),'b--', 'LineWidth',2)

legend('y_1','y_2')

title('\tau_1 = 0.2, \tau_2 = 0.5','FontSize',12)

xlabel t, ylabel('y','Rotation',0), ylim([-0.2,0.2])

subplot(2,2,3)

plot(sol.y(1,:),sol.y(2,:),'r-')

xlabel y_1, ylabel('y_2','Rotation',0)

xlim([-0.2,0.2]), ylim([-0.1,0.1])

sol = dde23(@f,[0.325,0.525],@history,tspan);

subplot(2,2,2)

plot(sol.x,sol.y(1,:),'r-', sol.x,sol.y(2,:),'b--', 'LineWidth',2)

legend('y_1','y_2')

title('\tau_1 = 0.325, \tau_2 = 0.525','FontSize',12)

xlabel t, ylabel('y','Rotation',0), ylim([-0.2,0.2])

subplot(2,2,4)

plot(sol.y(1,:),sol.y(2,:),'r-')

xlabel y_1, ylabel('y_2','Rotation',0)

xlim([-0.2,0.2]), ylim([-0.1,0.1])

function v = f(t,y,Z)

%F Neural network differential equation.

ylag1 = Z(:,1);

ylag2 = Z(:,2);

v = [-y(1) + 2*tanh(ylag2(2))

-y(2) - 1.5*tanh(ylag1(1))];

end

function v = history(t)

%HISTORY Initial function for neural network model

v = 0.1*[sin(t/10);cos(t/10)];

end

12.5 Partial Differential Equations 225

0 10 20 30 40

t

-0.2

-0.1

0

0.1

0.2

y

1
 = 0.2,

2
 = 0.5

y
1

y
2

-0.2 -0.1 0 0.1 0.2

y
1

-0.1

-0.05

0

0.05

0.1

y
2

0 10 20 30 40

t

-0.2

-0.1

0

0.1

0.2

y

1
 = 0.325,

2
 = 0.525

y
1

y
2

-0.2 -0.1 0 0.1 0.2

y
1

-0.1

-0.05

0

0.05

0.1

y
2

Figure 12.17. Neural network DDE.

with general delays and ddensd solves DDEs of neutral type, which involve delays in
the derivative y′ as well as in y.

12.5. Partial Differential Equations

The pdepe function solves a class of parabolic/elliptic PDE systems. These systems
involve a vector-valued unknown function u that depends on a scalar space variable,
x, and a scalar time variable, t. The general class to which pdepe applies has the
form

c

(
x, t, u,

∂u

∂x

)
∂u

∂t
= x−m

∂

∂x

(
xmf

(
x, t, u,

∂u

∂x

))
+ s

(
x, t, u,

∂u

∂x

)
,

where a ≤ x ≤ b and t0 ≤ t ≤ tf . The integer m can be 0, 1, or 2, corresponding to
slab, cylindrical, and spherical symmetry, respectively. The function c is a diagonal
matrix and the flux and source functions f and s are vector valued. Initial and
boundary conditions must be supplied in the following form. For a ≤ x ≤ b and
t = t0 the solution must satisfy u(x, t0) = u0(x) for a specified function u0. For x = a
and t0 ≤ t ≤ tf the solution must satisfy

pa(x, t, u) + qa(x, t)f

(
x, t, u,

∂u

∂x

)
= 0

for specified functions pa and qa. Similarly, for x = b and t0 ≤ t ≤ tf ,

pb(x, t, u) + qb(x, t)f

(
x, t, u,

∂u

∂x

)
= 0

must hold for specified functions pb and qb. Certain other restrictions are placed on
the class of problems that can be solved by pdepe; see doc pdepe for details.

226 Numerical Methods: Part II

A call to pdepe has the general form

sol = pdepe(m,@pdefun,@pdeic,@pdebc,xmesh,tspan,options);

which is similar to the syntax for bvp4c. The input argument m can take the values
0, 1, or 2, as described above. The function pdefun has the form

function [c,f,s] = pdefun(x,t,u,DuDx)

It accepts the space and time variables together with vectors u and DuDx that ap-
proximate the solution u and the partial derivative ∂u/∂x, and it returns vectors
containing the diagonal of the matrix c and the flux and source functions f and s.
Initial conditions are encoded in the function pdeic, which takes the form

function u0 = pdeic(x)

The function pdebc of the form

function [pa,qa,pb,qb] = pdebc(xa,ua,xb,ub,t)

evaluates pa, qa, pb, and qb for the boundary conditions at xa = a and xb = b. The
vector xmesh in the argument list of pdepe is a set of points in [a, b] with xmesh(1) = a
and xmesh(end) = b, ordered so that xmesh(i) < xmesh(i+1). This defines the
x-values at which the numerical solution is computed. The algorithm uses a second-
order spatial discretization method based on the xmesh-values. Hence the choice of
xmesh has a strong influence on the accuracy and cost of the numerical solution.
Closely spaced xmesh points should be used in regions where the solution is likely to
vary rapidly with respect to x. The vector tspan specifies the time points in [t0, tf]
where the solution is to be returned, with tspan(1) = t0, tspan(end) = tf , and
tspan(i) < tspan(i+1). The time integration in pdepe is performed by ode15s

and the actual timestep values are chosen dynamically—the tspan points simply
determine where the solution is returned and have little impact on the cost or accuracy.
The default properties of ode15s can be overridden via the optional input argument
options, which can be created with the odeset function (see Section 12.2.1). Altering
the defaults is not usually necessary so we do not discuss this further.

The output argument sol is a three-dimensional array such that sol(j,k,i) is the
approximation to the ith component of u at the point t = tspan(j), x = xmesh(k).
A postprocessing function pdeval is available for computing u and ∂u/∂x at points
that are not in xmesh.

To illustrate the use of pdepe, we begin with the Black–Scholes PDE, famous for
modeling derivative prices in financial mathematics. In transformed and dimensionless
form [183, Sec. 5.4], using parameter values from [133, Chap. 13], we have

∂u

∂t
=
∂2u

∂x2
+ (k − 1)

∂u

∂x
− ku, a ≤ x ≤ b, t0 ≤ t ≤ tf ,

where k = r/(σ2/2), r = 0.065, σ = 0.8, a = log(2/5), b = log(7/5), t0 = 0, tf = 5,
with initial condition

u(x, 0) = max(exp(x)− 1, 0)

and boundary conditions

u(a, t) = 0, u(b, t) =
7− 5 exp(−kt)

5
.

12.5 Partial Differential Equations 227

0

6

0.5

0.5

u

4

1

t

0

x

1.5

2
-0.5

0 -1

Figure 12.18. Black–Scholes solution with pdepe.

This is of the general form allowed by pdepe with m = 0 and

c(x, t, u) = 1, f

(
x, t, u,

∂u

∂x

)
=
∂u

∂x
, s

(
x, t, u,

∂u

∂x

)
= (k − 1)

∂u

∂x
− ku.

At x = a the boundary conditions have p(x, t, u) = u and q(x, t, u) = 0, and at x = b
they have p(x, t, u) = u − (7 − 5 exp(−kt))/5 and q(x, t, u) = 0. The function bs in
Listing 12.11 implements the problem. Here, we have used linspace to generate 40
equally spaced x-values between a and b for the spatial mesh and 20 equally spaced
t-values between t0 and tf for the output times. The nested function bspde defines
the PDE in terms of c, f, and s and bsic specifies the initial condition. Similarly,
in nested function bsbc the boundary conditions at x = a and x = b are returned
in pa, qa, pb, and qb. We use the 3D plotting function mesh to display the solution.
Figure 12.18 shows the resulting picture.

Next, we look at a system of two reaction–diffusion equations of a type that arises
in mathematical biology [89, Chap. 12]:

∂u

∂t
=

1

2

∂2u

∂x2
+

1

1 + v2
,

∂v

∂t
=

1

2

∂2v

∂x2
+

1

1 + u2

for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 0.2. Our initial conditions are

u(x, 0) = 1 + 1
2 cos(2πx), v(x, 0) = 1− 1

2 cos(2πx),

and our boundary conditions are

∂u

∂x
(0, t) =

∂u

∂x
(1, t) =

∂v

∂x
(0, t) =

∂v

∂x
(1, t) = 0.

228 Numerical Methods: Part II

Listing 12.11. Function bs.

function bs

%BS Black-Scholes PDE.

% Solves the transformed Black-Scholes equation.

m = 0;

r = 0.065;

sigma = 0.8;

k = r/(0.5*sigma^2);

a = log(2/5);

b = log(7/5);

t0 = 0;

tf = 5;

xmesh = linspace(a,b,40);

tspan = linspace(t0,tf,20);

sol = pdepe(m,@bspde,@bsic,@bsbc,xmesh,tspan);

u = sol(:,:,1);

mesh(xmesh,tspan,u)

xlabel('x','FontSize',12)

ylabel('t','FontSize',12)

zlabel('u','FontSize',12,'Rotation',0)

colormap copper

function [c,f,s] = bspde(x,t,u,DuDx)

%BSPDE Black-Scholes PDE.

c = 1;

f = DuDx;

s = (k-1)*DuDx-k*u;

end

function u0 = bsic(x)

%BSIC Initial condition at t = t0.

u0 = max(exp(x)-1,0);

end

function [pa,qa,pb,qb] = bsbc(xa,ua,xb,ub,t)

%BSBC Boundary conditions at x = a and x = b.

pa = ua;

qa = 0;

pb = ub - (7 - 5*exp(-k*t))/5;

qb = 0;

end

end

12.5 Partial Differential Equations 229

0.5
0.2

1

1

u
1

t

0.1

x

1.5

0.5
0 0

0.5
0.2

1

1

u
2

t

0.1

x

1.5

0.5
0 0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t

0

2

4

6
Energy

Figure 12.19. Reaction–diffusion system solution with pdepe.

To put this into the framework of pdepe we write (u, v) as (u1, u2) and express the
PDE as [

1 0
0 1

]
× ∂

∂t

[
u1
u2

]
=

∂

∂x

[
1
2∂u1/∂x
1
2∂u2/∂x

]
+

[
1/(1 + u22)
1/(1 + u21)

]
.

The function mbiol in Listing 12.12 solves the PDE system. Note that the output
arguments c, f, s, pa, qa, pb, and qb in the local functions mbpde and mbbc are 2-by-1
arrays, because there are two PDEs in the system. The solutions plotted with surf

can be seen in the upper part of Figure 12.19. It follows from [89, Ex. 12.5] that the
energy

E(t) =
1

2

∫ 1

0

[(
∂u

∂x

)2

+

(
∂v

∂x

)2
]

dx

decays exponentially to zero as t → ∞. To verify this fact numerically, we use
simple finite differences and quadrature in mbiol to approximate the energy integral.
(Alternatively, the function pdeval could be used to obtain approximations to ∂u/∂x
and ∂v/∂x.) The resulting plot of E(t) is given in the lower part of Figure 12.19.

Further examples of pdepe in use can be found in doc pdepe. We note that pdepe
is designed to solve a subclass of small systems of parabolic and elliptic PDEs to
modest accuracy. If your PDE is not suitable for pdepe then the Partial Differential
Equation Toolbox might be appropriate.

230 Numerical Methods: Part II

Listing 12.12. Function mbiol.

function mbiol

%MBIOL Reaction-diffusion system from mathematical biology.

% Solves the PDE and tests the energy decay condition.

m = 0;

xmesh = linspace(0,1,15);

tspan = linspace(0,0.2,10);

sol = pdepe(m,@mbpde,@mbic,@mbbc,xmesh,tspan);

u1 = sol(:,:,1);

u2 = sol(:,:,2);

subplot(221)

surf(xmesh,tspan,u1)

xlabel('x','FontSize',12)

ylabel('t','FontSize',12)

title('u_1','FontSize',14,'FontWeight','normal')

subplot(222)

surf(xmesh,tspan,u2)

xlabel('x','FontSize',12)

ylabel('t','FontSize',12)

title('u_2','FontSize',14,'FontWeight','normal')

% Estimate energy integral.

dx = xmesh(2) - xmesh(1); % Constant spacing.

energy = 0.5*sum((diff(u1,1,2)).^2 + (diff(u2,1,2)).^2, 2)/dx;

subplot(212)

plot(tspan',energy,'LineWidth',1)

xlabel('t','FontSize',12)

title('Energy','FontSize',14,'FontWeight','normal')

% ----------------------- Local functions -----------------------

function [c,f,s] = mbpde(x,t,u,DuDx)

c = [1; 1];

f = DuDx/2;

s = [1/(1+u(2)^2); 1/(1+u(1)^2)];

function u0 = mbic(x);

u0 = [1+0.5*cos(2*pi*x); 1-0.5*cos(2*pi*x)];

function [pa,qa,pb,qb] = mbbc(xa,ua,xb,ub,t)

pa = [0; 0];

qa = [1; 1];

pb = [0; 0];

qb = [1; 1];

12.5 Partial Differential Equations 231

Multidimensional integrals are another whole multidimensional bag of worms.

— WILLIAM H. PRESS, SAUL A. TEUKOLSKY,

WILLIAM T. VETTERLING, and BRIAN P. FLANNERY,

Numerical Recipes in FORTRAN (1992)

Perhaps the crudest way to evaluate
∫ x

y
f(u)du

is to plot the graph of f(u) on uniformly squared paper

and then count the squares that lie inside the desired area.

This method gives numerical integration its other name:

numerical quadrature.

Another way, suitable for chemists,

is to plot the graph on paper of uniform density,

cut out the area in question, and weigh it.

— WILLIAM M. KAHAN, Handheld Calculator Evaluates Integrals (1980)

The options vector is optional.

— LAWRENCE F. SHAMPINE and MARK W. REICHELT,

The MATLAB ODE Suite (1997)

Stiff equations are problems for which explicit methods don’t work.

— E. HAIRER AND G. WANNER, Solving Ordinary Differential Equations II (1996)

Just about any BVP can be formulated for solution with bvp4c.

— LAWRENCE F. SHAMPINE, JACEK KIERZENKA, and MARK W. REICHELT,

Solving Boundary Value Problems for Ordinary

Differential Equations in MATLAB with bvp4c (2000)

Chapter 13

Input and Output

In this chapter we discuss how to obtain input from the user, how to display informa-
tion on the screen, and how to read and write text files. Note that textual output can
be captured into a file (perhaps for subsequent printing) using the diary command,
as described on p. 32. How to print and save figures is discussed in Section 8.4.

13.1. User Input

User input can be obtained with the input function, which displays a prompt and
waits for a user response:

>> x = input('Starting point: ')

Starting point: 0.5

x =

0.5000

Here, the user has responded by typing “0.5”, which is assigned to x. The input is
interpreted as a string when an argument ’s’ is appended:

>> mytitle = input('Title for plot: ','s')

Title for plot: Experiment 2

mytitle =

Experiment 2

The function ginput collects data via mouse clicks. The command

[x,y] = ginput(n)

returns in the vectors x and y the coordinates of the next n mouse clicks from the
current figure window. Input can be terminated before the nth mouse click by pressing
the return key. One use of ginput is to find the approximate location of points on
a graph. For example, with Figure 8.10 (on p. 108) in the current figure window,
you might type [x,y] = ginput(1) and click on one of the places where the curves
intersect. As another example, the first two lines of bezier plot in Listing 8.3 can
be replaced by

axis([0 1 0 1])

[x,y] = ginput(4);

P = [x';y'];

Now the control points are determined by the user’s mouse clicks.
The pause command suspends execution until a key is pressed, while pause(n)

waits for n seconds before continuing. A typical usage is to interpose pause commands

233

234 Input and Output

within a sequence of plot commands. In the past it was also used in conjunction
with the echo command in scripts intended for demonstration, though this usage has
been superseded by demonstrations shown in the Help browser.

13.2. Output to the Screen

The results of MATLAB computations are displayed on the screen whenever a semi-
colon is omitted after an assignment, and the format of the output can be varied using
the format command. But much greater control over the output is available with the
use of several functions.

The disp function displays the value of a variable, according to the current format,
without first printing the variable name and “=”. If its argument is a string, disp
displays the string. Example:

>> disp('Here is a 3-by-3 magic square'), disp(magic(3))

Here is a 3-by-3 magic square

8 1 6

3 5 7

4 9 2

More sophisticated formatting can be done with the fprintf function. The syntax
is fprintf(format,list-of-expressions), where format is a string that specifies the
precise output format for each expression in the list. In the example

>> fprintf('%6.3f\n', pi)

3.142

the % character denotes the start of a format specifier requesting a field width of 6
with three digits after the decimal point, and \n denotes a new line (without which
subsequent output would continue on the same line). If the specified field width is
not large enough MATLAB expands it as necessary:

>> fprintf('%6.3f\n', pi^10)

93648.047

The fixed-point notation produced by f is suitable for displaying integers (using
%n.0f) and when a fixed number of decimal places are required, such as when dis-
playing dollars and cents (using %n.2f). If f is replaced by e then the digit after
the period denotes one less than the total number of significant digits to display in
exponential notation (there will always be one digit before the decimal point):

>> fprintf('%12.3e\n', pi)

3.142e+00

When choosing the field width remember that for a negative number a minus sign
occupies one position:

>> fprintf('%5.2f\n%5.2f\n',exp(1),-exp(1))

2.72

-2.72

A minus sign just after the % character causes the field to be left justified:

13.2 Output to the Screen 235

>> fprintf('%5.0f\n%5.0f\n',9,103)

9

103

>> fprintf('%-5.0f\n%-5.0f\n',9,103)

9

103

The format string can contain characters to be printed literally, as the following
example shows:

>> iter = 11; m = 5; rng(1); U = orth(randn(m)) + 1e-10;

>> fprintf('iter = %2.0f\n', iter)

iter = 11

>> fprintf('norm(U''*U-I) = %11.4e\n', norm(U'*U - eye(m)))

norm(U'*U-I) = 5.2325e-10

Note that, within a string, '' represents a single quote.
To print % and \ use \% and \\ in the format string. Another useful format

specifier is g, which uses whichever of e and f produces the shorter result:

>> fprintf('%g %g\n', exp(1), exp(20))

2.71828 4.85165e+08

Various other specifiers and special characters are supported by fprintf, which be-
haves similarly to the C function printf (see doc fprintf).

If more numbers are supplied to be printed than there are format specifiers in the
fprintf statement then the format specifiers are reused, with elements being taken
from a matrix down the first column, then down the second column, and so on. This
feature can be used to avoid a loop. Example:

>> A = [30 40 60 70];

>> fprintf('%g miles/hour = %g kilometers/hour\n', [A; 8*A/5])

30 miles/hour = 48 kilometers/hour

40 miles/hour = 64 kilometers/hour

60 miles/hour = 96 kilometers/hour

70 miles/hour = 112 kilometers/hour

To print a string variable use the s format specifier. This example makes use of a
cell array (see Section 18.7):

>> data = {'Alan Turing', 1912, 1954};

>> fprintf('%s (%4.0f-%4.0f)\n', data{1:3})

Alan Turing (1912-1954)

The function sprintf is analogous to fprintf but returns its output as a string. It
is useful for producing labels for plots. A simpler to use but less versatile alternative
is num2str: num2str(x,n) converts x to a string with n significant digits, with n

defaulting to 4. For converting integers to strings, int2str can be used. Here are
three examples, the first of which uses the format specifier u for an unsigned integer
and the second and third of which make use of string concatenation (see Section 18.1):

236 Input and Output

>> n = 16;

>> err_msg = sprintf('Must supply a %u-by-%u matrix', n, n)

err_msg =

Must supply a 16-by-16 matrix

>> disp(['Pi is given to 6 significant figures by ' num2str(pi,6)])

Pi is given to 6 significant figures by 3.14159

>> i = 3;

>> title_str = ['Result of experiment ' int2str(i)]

title_str =

Result of experiment 3

13.3. File Input and Output

A number of functions are provided for reading and writing binary and formatted
text files. These include functions for reading and writing spreadsheets (xlsread,
xlswrite) and tables (readtable, writetable—tables are discussed in Section 18.6).
Type help iofun to see the complete list.

We show by example how to write data to a formatted text file and then read it
back in. Before operating on a file it must be opened with the fopen function, whose
first argument is the filename and whose second argument is a file permission, which
has several possible values including ’r’ for read and ’w’ for write. A file identifier
is returned by fopen; it is used in subsequent read and write statements to specify
the file. Data is written using the fprintf function, which takes as its first argument
the file identifier. Thus the code

A = [30 40 60 70];

fid = fopen('myoutput','w');

fprintf(fid,'%g miles/hour = %g kilometers/hour\n', [A; 8*A/5]);

fclose(fid);

creates a file myoutput containing

30 miles/hour = 48 kilometers/hour

40 miles/hour = 64 kilometers/hour

60 miles/hour = 96 kilometers/hour

70 miles/hour = 112 kilometers/hour

Note that we included a semicolon after fprintf and fclose because we wanted to
suppress the screen output of these statements, which is the number of bytes written
and the status of the close operation, respectively. The file can be read in as follows:

>> fid = fopen('myoutput','r');

>> X = fscanf(fid,'%g miles/hour = %g kilometers/hour')

X =

30

48

40

64

60

13.3 File Input and Output 237

96

70

112

>> fclose(fid);

The fscanf function reads data formatted according to the specified format string,
which in this example says, “read a general floating-point number (%g), skip over the
string ’ miles/hour = ’, read another general floating-point number and skip over
the string ’ kilometers/hour’. The format string is recycled until the entire file has
been read and the output is returned in a vector. We can convert the vector to the
original matrix format using

>> X = reshape(X,2,4)'

X =

30 48

40 64

60 96

70 112

Alternatively, a matrix of the required shape can be obtained directly:

>> X = fscanf(fid,'%g miles/hour = %g kilometers/hour',[2 inf])'

X =

30 48

40 64

60 96

70 112

The third argument to fscanf specifies the dimensions of the output matrix, which
is filled column by column. We specify inf for the number of columns, to allow for
any number of lines in the file, and transpose to recover the original format.

Another way to read a text file is with the powerful textscan function, which uses
a different syntax than fscanf for the format string and returns the output in a cell
array:

>> fid = fopen('myoutput','r');

>> C = textscan(fid,'%f miles/hour = %f kilometers/hour')

C =

[4×1 double] [4×1 double]

>> fclose(fid);

>> C{1}'

ans =

30 40 60 70

>> C{2}'

ans =

48 64 96 112

textscan has a number of configurable parameters and is recommended for reading
large files.

Binary files are created and read using the functions fread and fwrite. See the
online help for details of their usage.

MATLAB has the capability to read and write XML files, Excel spreadsheets, zip
files, gzip files, and tar files. Type help iofun for a list of the relevant functions.

238 Input and Output

13.4. Fine Tuning the Display of Arrays

Researchers often need to incorporate the results of MATLAB computations into
tables in a document. Copying and pasting raw output from the Command Window
is not a good idea, as it may not provide the numbers in the required format and it
is error prone and wastes time if computations need to be redone. It is much better
to have MATLAB print the output formatted exactly as required. Listing 13.1 shows
a function print matrix that does this job. It offers options to print to a file, to
remove unnecessary zeros from the exponent field, to print a matrix in the form of
a LATEX tabular environment, and to format each column to a given field width (no
warning is given if this results in truncation of a number). Here are some examples:

>> x = [0 1.999 pi*1e5 3.959*1e20 -5.4555*1e100];

>> A = [x; 1./(x+eps)]

A =

0 1.9990e+00 3.1416e+05 3.9590e+20 -5.4555e+100

4.5036e+15 5.0025e-01 3.1831e-06 2.5259e-21 -1.8330e-101

>> print_matrix(A)

0.00e+00 2.00e+00 3.14e+05 3.96e+20 -5.46e+100

4.50e+15 5.00e-01 3.18e-06 2.53e-21 -1.83e-101

>> print_matrix(A,{'%6.2e','%3.1f','%7.3e','%4.1e','%g'})

0.00e+00 2.0 3.142e+05 4.0e+20 -5.4555e+100

4.50e+15 0.5 3.183e-06 2.5e-21 -1.83301e-101

>> print_matrix(A,'%4.1e',[],9,1,1) % LaTeX form, remove +, zeros.

0.0 & 2.0 & 3.1e5 & 4.0e20 & -5.5e100 \\

4.5e15 & 5.0e-1 & 3.2e-6 & 2.5e-21 & -1.8e-101 \\

The print matrix function was used to produce Table 26.1. It can readily be adapted
to particular needs.

13.4 Fine Tuning the Display of Arrays 239

Listing 13.1. Script print matrix.

function print_matrix(x, fmt, file, fw, ltx, ex)

%PRINT_MATRIX Print formatted matrix to Command Window or file.

% PRINT_MATRIX(X, fmt, file, fw, ltx, ex) prints the matrix X according

% to the fprintf-style format specified by the string fmt.

% Default: fmt = '%9.2e'.

% If fmt is a cell array of strings then its j'th entry will be used

% to format the j'th column, with cyclic re-use of entries as necessary.

% fw: fieldwidth of every number (default: automatic).

% file: filename for output or empty for output to Command Window.

% ltx = 1 for LaTeX tabular format, else ltx = 0 (default).

% ex = 1 for delete plus and leading zeros in exponent,

% else ex = 0 (default).

if nargin < 2 | isempty(fmt), fmt = '%9.2e'; end

if nargin < 3, file = []; end

if nargin < 4, fw = []; end

if nargin < 5 | isempty(ltx), ltx = 0; end

if nargin < 6, ex = 0; end

if isstr(fmt), fmt = {fmt}; end % Ensure fmt is cell array.

[m,n] = size(x);

if isempty(file)

fid = 1; % Output to screen.

else

fid = fopen(file,'w');

end

% Conversions for removing plus and leading zeros in exponents.

exps = {'e+' 'e'; 'e00 ' ' '; 'e0' 'e'; 'e-00' 'e-' ; 'e-0' 'e-'};

for i=1:m

for j=1:n

fmtj = fmt{1+mod(j-1,length(fmt))}; % Format string for j'th col.

str = sprintf([fmtj ' '], x(i,j));

if ex

for k=1:length(exps)

str = strrep(str,exps{k,1},exps{k,2});

end

end

if fw

str = [str char(32*ones(1,fw))];

str = str(1:fw);

end

fprintf(fid,'%s ', str)

if ltx && j<n, fprintf(fid,'& '); end

end

if ltx, fprintf(fid,'\\\\'); end

fprintf(fid,'\n');

end

if ~isempty(file), fclose(fid); end

240 Input and Output

Make input easy to prepare and output self-explanatory.

— BRIAN W. KERNIGHAN and P. J. PLAUGER,

The Elements of Programming Style (1978)

Output is almost like input but it’s not input, it’s output.

To correlate the output with the input and

to verify that the input was put in correctly,

it’s a good idea to output the input along with the output.

— ROGER EMANUEL KAUFMAN, A FORTRAN Coloring Book (1978)

On two occasions, I have been asked [by the members of Parliament],

“Pray, Mr. Babbage,

if you put into the machine wrong figures,

will the right answers come out?”. . .

I am not able rightly to apprehend

the kind of confusion of ideas

that could provoke such a question.

— CHARLES BABBAGE, Passages from the Life of a Philosopher (1864)

Chapter 14

Troubleshooting

14.1. Errors and Assertions

Errors in MATLAB are of two types: syntax errors and runtime errors. A syntax
error is illustrated by

>> for i=1#10, x(i) = 1/i; end

for i=1#10, x(i) = 1/i; end

|

Error: The input character is not valid in MATLAB statements or

expressions.

Here, a # has been typed instead of a colon and the error message pinpoints where
the problem occurs. If an error occurs in a code then the name of the code and the
line on which the error occurred are shown.

A runtime error occurs with the script fib in Listing 14.1. The loop should begin
at i = 3 to avoid referencing x(0). When we run the script, MATLAB produces an
informative error message:

>> fib

Subscript indices must either be real positive integers or logicals.

Error in fib (line 4)

x(i) = x(i-1) + x(i-2);

In the Command Window, the phrase line 4 is an underlined hyperlink to line 4 of
the script fib. If you click on the hyperlink then fib.m is opened in the MATLAB
Editor/Debugger (see Section 7.2) and the cursor is placed on line 4.

When an error occurs in a nested sequence of calls, the history of the calls is shown
in the error message. The first “Error in” line is the one describing the code in which
the error is located.

MATLAB error messages are sometimes rather unhelpful and occasionally mis-
leading. It is perhaps inevitable with such a powerful language that an error message
does not always make it immediately clear what has gone wrong. We give a few
examples of error messages generated for reasons that are perhaps not obvious.
• At least one END is missing: the statement may begin here. The message

is produced by the following code, which is one way of implementing the sign function
(sign):

if x > 0

f = 1;

else if x == 0

f = 0;

241

242 Troubleshooting

Listing 14.1. Script fib that generates a runtime error.

%FIB Fibonacci numbers.

x = ones(50,1);

for i = 2:50

x(i) = x(i-1) + x(i-2);

end

else

f = -1;

end

The problem is an unwanted space between else and if. MATLAB (correctly)
interprets the if after the else as starting a new if statement and then complains
when it runs out of ends to match the ifs.
• Undefined function or variable. Several commands, such as clear, load,

and global, take a list of arguments separated by spaces. If a comma is used in
the list it is interpreted as separating statements, not arguments. For example, the
command clear a,b clears a and prints b, so if b is undefined the above error message
is produced.
• Inputs must be a scalar and a square matrix. This message is produced when

an attempt is made to exponentiate a nonsquare matrix, and it can be puzzling. For
example, it is generated by the expression (1:5)^3, which was presumably meant to
be an elementwise cubing operation and thus should be expressed as (1:5).^3.

Many functions check for error conditions, issuing an error message and terminat-
ing when one occurs. For example:

>> mod(3,sqrt(-2))

??? Error using ==> mod

Arguments must be real.

In a code file this behavior can be achieved with the error command: the line

if ~isreal(arg2), error('Arguments must be real.'), end

produces the result just shown when arg2 is not real. An invocation of error can
also give arguments and use a format conversion string, just as with fprintf (see
Section 13.2). For example, assuming that A = zeros(3):

>> error('Matrix dimension is %g, but should be even.', length(A))

??? Matrix dimension is 3, but should be even.

The most recent error message can be recalled with the lasterr function.
Errors support message identifiers that identify the error. Identifiers are more

commonly used with warnings, and they are described in the next section.
The assert function is similar to the error function but takes a logical expression

cond as argument: if cond is false then the statement assert(cond) terminates
execution and prints Assertion failed in the Command Window, but if cond is true
execution passes to the next statement. With a second argument, assert(cond,msg),
the string msg is displayed as the error message. Examples:

14.2 Warnings 243

>> assert(cond(hilb(6)) < 1e5)

Assertion failed.

>> x = [1 4 3 5 7];

>> assert(isequal(x,sort(x)),'Vector x must be sorted.')

Vector x must be sorted.

The example using error above can be rewritten as

>> assert(isreal(arg2),'Arguments must be real.')

Assertions are useful in program development for verifying that a program is
performing correctly [10]. They can be used to check conditions that are known to be
true for the underlying algorithm, such as ranges of variables at particular points in
the code or loop invariants (relations between variables that should be true on every
iteration of a loop).

14.2. Warnings

The function warning, like error, displays its string argument, but execution contin-
ues instead of stopping. The reason for using warning rather than displaying a string
with disp (for example) is that the display of warning messages can be controlled
via certain special string arguments to warning. In particular, warning('off') or
warning off turns off the display of all warning messages and warning('on') or
warning on turns them all back on again.

MATLAB allows message identifiers to be attached to warnings in order to identify
the source of the warning and to allow warnings to be turned off and on individually.
For example:

>> nchoosek(100,80)

Warning: Result may not be exact. Coefficient is greater than

9.007199e+15 and is only accurate to 15 digits

ans =

5.3598e+20

To suppress this warning, we need to find its identifier, which can be obtained as the
second output argument of lastwarn:

>> [warnmsg,msg_id] = lastwarn

warnmsg =

Result may not be exact. Coefficient is greater than 9.007199e+15

and is only accurate to 15 digits

msg_id =

MATLAB:nchoosek:LargeCoefficient

We can turn this warning off, without affecting the status of any other warnings, with

>> warning off MATLAB:nchoosek:LargeCoefficient

>> % Or warning('off',msg_id)

>> nchoosek(100,80)

ans =

5.3598e+20

244 Troubleshooting

The identifiers of warnings can be automatically displayed by setting warning on

verbose:

>> warning on verbose

>> inv([1 1; 1 1])

Warning: Matrix is singular to working precision.

(Type "warning off MATLAB:singularMatrix" to suppress this warning.)

ans =

Inf Inf

Inf Inf

A quick way to turn off a warning that has just been invoked is to type warning

off last.
The status of all warnings can be viewed:

>> warning query all

The default warning state is 'on'. Warnings not set to the

default are

State Warning Identifier

off MATLAB:COPYFILE:SHFileOperationErrorID

off MATLAB:Debugger:BreakpointSuppressed

off MATLAB:JavaComponentThreading

off MATLAB:JavaEDTAutoDelegation

...

off MATLAB:nchoosek:LargeCoefficient

...

Here, we have truncated the list. Apart from the nchoosek warning, all the other
warnings are in the state they were in when our MATLAB session started.

A common warning message is Matrix is close to singular or badly scaled,
which signals an attempt to invert a nearly singular matrix; see the example on
p. 138. While this warning is welcome, in that it may indicate a bug in your code or
unexpected behavior of an algorithm, it is sometimes unwanted. It can be turned off
with warning('off','MATLAB:nearlySingularMatrix').

You can define your own warnings with identifiers using the syntax

warning('msg_id','warnmsg')

(or by making 'warnmsg' a format string and following it by a list of arguments).
Here, 'msg_id' is a string comprising a component field, which might identify a
product or a toolbox, followed by a mnemonic field relating to the message. The actual
warning message is in the string 'warnmsg'. For example, the function fd deriv in
Listing 10.1 is likely to return inaccurate results if h is close to eps, so we could
append to the function the lines

if h <= 1e-14

warning('MATLABGuide:fd_deriv:RoundingErrorMayDominate',...

'Difference h of order eps may produce inaccurate ', ...

'result.')

end

14.3 Debugging 245

If we do so, then the following behavior is observed:

>> fd_deriv(@exp,2,1e-15);

Warning: Difference h of order eps may produce inaccurate result.

> In fd_deriv at 11

If you change the warning state in a code it is good practice to save the old state
and restore it before the end of the code, as in the following example:

warns = warning; % or "warns = warning('query','all')"

warning('off') % or "warning off all"

...

warning(warns)

14.3. Debugging

Debugging MATLAB codes is in principle no different to debugging any other type of
computer program, but several facilities are available to ease the task. When a code
runs but does not perform as expected it is often helpful to print out the values of key
variables, which can be done by removing semicolons from assignment statements or
adding statements consisting of the relevant variable names.

When it is necessary to inspect several variables and the relations between them
the keyboard statement is invaluable. When a keyboard statement is encountered
in a code execution halts and a command line with the special prompt K>> appears.
Any MATLAB command can be executed and variables in the workspace can be
inspected or changed. When keyboard mode is invoked from within a function the
visible workspace is that of the function. The command dbup changes the workspace
to that of the calling function or the main workspace; dbdown reverses the effect of
dbup. Typing return followed by the return key causes execution of the code to
be resumed. The dbcont command has the same effect. Alternatively, the dbquit

command quits keyboard mode and terminates the code.
Another way to invoke keyboard mode is via the debugger. Typing

dbstop in foo at 5

sets a breakpoint at line 5 of foo.m; this causes subsequent execution of foo.m to
stop just before line 5 and keyboard mode to be entered. The command

dbstop in foo at 3 if i==5

sets a conditional breakpoint that causes execution to stop only if the given expression
evaluates to true, that is, if i = 5. A listing of foo.m with line numbers is obtained
with dbtype foo. Breakpoints are cleared using the dbclear command. Breakpoints
can also be set from the MATLAB Editor/Debugger.

We illustrate the use of the debugger on the script fib discussed in the last section
(Listing 14.1). Here, we set a breakpoint on a runtime error and then inspect the
value of the loop index when the error occurs:

>> dbstop if error

>> fib

Subscript indices must either be real positive integers or logicals.

Error in fib (line 4)

246 Troubleshooting

x(i) = x(i-1) + x(i-2);

4 x(i) = x(i-1) + x(i-2);

K>> i

i =

2

K>> dbquit

The MATLAB debugger is a powerful tool with several other features that are
described in the online documentation. In addition to the command line interface to
the debugger illustrated above, an Editor/Debugger window is available that provides
a visual interface (see Section 7.2).

A useful tip for debugging is to execute

clear all

and one of

clf

close all

before executing the code with which you are having trouble. The first command
clears variables and functions from memory. This is useful when, for example, you are
working with scripts because it is possible for existing variables to cause unexpected
behavior or to mask the fact that a variable is accessed before being initialized in the
script. The other commands are useful for clearing the effects of previous graphics
operations.

14.4. Pitfalls

Here are some suggestions to help avoid pitfalls particular to MATLAB.

• If you use functions i or j for the imaginary unit, make sure that they have not
previously been overridden by variables of the same name (clear i or clear

j clears the variable and reverts to the functional form). In general it is not
advisable to choose variable names that are the names of MATLAB functions.
For example, if you assign

>> rand = 1;

then subsequent attempts to use the rand function generate an error:

>> A = rand(3)

Index exceeds matrix dimensions.

In fact, MATLAB is still aware of the function rand, but the variable takes
precedence, as can be seen from

>> which -all rand

rand is a variable.

C:\MATLAB2016b\toolbox\matlab\randfun\@RandStream\rand.m

% Shadowed RandStream method

built-in (C:\MATLAB2016b\toolbox\matlab\randfun\rand)

% Shadowed

14.4 Pitfalls 247

The function can be reinstated by clearing the variable:

>> clear rand

>> rand

ans =

0.6068

• Confusing behavior can sometimes result from the fact that max, min, and sort

behave differently for real and for complex data—in the complex case they
work with the absolute values of the data. For example, suppose we compute
the following 4-vector, which should be real but has a tiny nonzero imaginary
part due to rounding errors:

e =

-4.7986e+00 + 1.6448e-14i

4.9552e+00 + 1.4972e-14i

1.3982e+00 + 4.5330e-15i

-6.6605e-02 + 6.8292e-15i

To find the most negative element we need to use min(real(e)) rather than
min(e):

>> min(e)

ans =

-6.6605e-02 + 6.8292e-15i

>> min(real(e))

ans =

-4.7986e+00

• As noted in the Aside on p. 56, mathematical formulas and descriptions of
algorithms often index vectors and matrices so that their subscripts start at
0. Since subscripts of MATLAB arrays start at 1, translation of subscripts is
necessary when implementing such formulas and algorithms in MATLAB.

248 Troubleshooting

The road to wisdom?

Well, it’s plain and simple to express:

Err

and err

and err again

but less

and less

and less.

— PIET HEIN, Grooks (1966)

Beware of bugs in the above code;

I have only proved it correct, not tried it.

— DONALD E. KNUTH7 (1977)

Test programs at their boundary values.

— BRIAN W. KERNIGHAN and P. J. PLAUGER,

The Elements of Programming Style (1978)

By June 1949 people had begun to realize that

it was not so easy to get a program right as had at one time appeared. . .

The realization came over me with full force that

a good part of the remainder of my life was going to be spent in

finding errors in my own programs.

— MAURICE WILKES, Memoirs of a Computer Pioneer (1985)

7See http://www-cs-faculty.stanford.edu/~uno/faq.html

http://www-cs-faculty.stanford.edu/~uno/faq.html

Chapter 15

Sparse Matrices

A sparse matrix is one with a large percentage of zero elements. When dealing with
large, sparse matrices it is desirable to take advantage of the sparsity by storing and
operating only on the nonzeros. MATLAB arrays of dimension up to 2 can have a
sparse attribute, in which case just the nonzero entries of the array together with
their row and column indices are stored. Currently, sparse arrays are supported only
for the double data type. In this chapter we will use the term “sparse matrix” for a
two-dimensional double array having the sparse attribute and the term “full matrix”
for such an array having the (default) full attribute.

More details on sparse matrix methods can be found in [27] (of which Chapter 10
is devoted to MATLAB) and [29].

15.1. Sparse Matrix Generation

Sparse matrices can be created in various ways, several of which involve the sparse

function. Given a t-vector s of matrix entries and t-vectors i and j of indices,
the command A = sparse(i,j,s) defines a sparse matrix A of dimension max(i)-by-
max(j) with A(i(k),j(k)) = s(k) for k=1 : t and all other elements zero. Example:

>> A = sparse([1 2 2 4 4],[3 1 4 2 4],1:5)

A =

(2,1) 2

(4,2) 4

(1,3) 1

(2,4) 3

(4,4) 5

MATLAB displays a sparse matrix by listing the nonzero entries preceded by their
indices, sorted by columns. If an index i(k),j(k) is supplied more than once then
the corresponding entries are added:

>> sparse([1 2 2 4 1],[3 1 4 2 3],1:5)

ans =

(2,1) 2

(4,2) 4

(1,3) 6

(2,4) 3

A sparse matrix can be converted to a full one using the full function:

>> B = full(A)

B =

249

250 Sparse Matrices

0 0 1 0

2 0 0 3

0 0 0 0

0 4 0 5

Conversely, a full matrix B is converted to the sparse storage format by A = sparse(B).
The number of nonzeros in a sparse (or full) matrix is returned by nnz:

>> nnz(A)

ans =

5

After defining A and B, we can use the whos command to check the amount of storage
used:

>> whos

Name Size Bytes Class Attributes

A 4×4 120 double sparse

B 4×4 128 double

ans 1×1 8 double

The matrix B comprises 16 double-precision numbers of 8 bytes each, making a total
of 128 bytes. The storage required for a sparse n-by-n matrix with nnz nonzeros is
16*nnz + 8*(n+1) bytes, which includes the nnz double-precision numbers plus some
4-byte integers. The same formula applies to m-by-n matrices, since the number of
rows does not affect the required storage.

The sparse function accepts three extra arguments. The command

A = sparse(i,j,s,m,n)

constructs an m-by-n sparse matrix; the last two arguments are necessary when the
last row or column of A is all zero. The command

A = sparse(i,j,s,m,n,nzmax)

allocates space for nzmax nonzeros, which is useful if extra nonzeros, not in s, are to
be introduced later, for example when A is generated column by column.

A sparse matrix of zeros is produced by sparse(m,n) (both arguments must be
specified), which is an abbreviation for sparse([],[],[],m,n,0).

The sparse identity matrix is produced by speye(n) or speye(m,n), while the
command spones(A) produces a matrix with the same sparsity pattern as A and with
ones in the nonzero positions.

The arguments that sparse would need to reconstruct an existing matrix A via
sparse(i,j,s,m,n) can be obtained using

[i,j,s] = find(A);

[m,n] = size(A);

If just s is required, then s = nonzeros(A) can be used. The number of storage
locations allocated for nonzeros in A can be obtained with nzmax(A). The inequality
nnz(A) <= nzmax(A) always holds.

The function spdiags is an analogue of diag for sparse matrices. The command
A = spdiags(B,d,m,n) creates an m-by-n matrix A whose diagonals indexed by d are
taken from the columns of B. This function is best understood by looking at examples.
Given

15.1 Sparse Matrix Generation 251

B =

1 2 0

1 2 3

0 2 3

0 2 3

d =

-2 0 1

we can define

>> A = spdiags(B,d,4,4)

A =

(1,1) 2

(3,1) 1

(1,2) 3

(2,2) 2

(4,2) 1

(2,3) 3

(3,3) 2

(3,4) 3

(4,4) 2

>> full(A)

ans =

2 3 0 0

0 2 3 0

1 0 2 3

0 1 0 2

Note that the subdiagonals are taken from the leading parts of the columns of B and
the superdiagonals from the trailing parts. Diagonals can be extracted with spdiags:
[B,d] = spdiags(A) recovers B and d above. The next example sets up a particular
tridiagonal matrix:

>> n = 5; e = ones(n,1);

>> A = spdiags([-e 4*e -e],[-1 0 1],n,n);

>> full(A)

ans =

4 -1 0 0 0

-1 4 -1 0 0

0 -1 4 -1 0

0 0 -1 4 -1

0 0 0 -1 4

Random sparse matrices are generated with sprand and sprandn. The command A

= sprand(S) generates a matrix with the same sparsity pattern as S and with nonzero
entries uniformly distributed on [0, 1]. Alternatively, A = sprand(m,n,density)

generates an m-by-n matrix of a random sparsity pattern containing approximately
density*m*n nonzero entries uniformly distributed on [0, 1]. With four input argu-
ments, A = sprand(m,n,density,rc) produces a matrix for which the reciprocal of
the condition number is about rc. The syntax for sprandn is the same, but random

252 Sparse Matrices

numbers from the normal (0,1) distribution are produced. The function sprandsym

is similar to sprandn, but produces symmetric matrices.
An invaluable command for visualizing sparse matrices is spy, which plots the

sparsity pattern with a dot representing a nonzero; see the plots in the next section.
A sparse array can be distinguished from a full one using the logical function

issparse (there is no “isfull” function).

15.2. Linear Algebra

MATLAB is able to solve sparse linear equation, eigenvalue, and singular value prob-
lems, taking advantage of sparsity as it does so.

As for full matrices (see Section 9.3.1), the backslash operator \ can be used to
solve linear systems. The effect of x = A\b when A is sparse is roughly as follows (for
full details, type doc mldivide). If A is square and banded then a banded solver is
used. If A is a permutation of a triangular matrix substitution is used. If A is a
Hermitian positive definite matrix a Cholesky factorization with a minimum-degree
reordering is used. For a square matrix with no special properties, a sparse LU
factorization is computed using UMFPACK [25], [26] with a reordering produced
by amd (approximate minimum-degree permutation) or colamd (column approximate
minimum-degree permutation), depending on the sparsity pattern of the matrix. If A
is rectangular then QR factorization is used; a rank-deficiency test is performed based
on the diagonal elements of the triangular factor.

The importance of avoiding matrix inversion where possible was explained in Sec-
tion 9.4 in the context of full matrices. Matrix inversion is deprecated even more
strongly for sparse matrices, because the inverse of a matrix containing many zeros
usually has far fewer zeros—often none. Hence although the inv function will invert
a sparse matrix (and return the result in the sparse format), it should almost never
be used to do so.

To compute or estimate the condition number of a sparse matrix condest should
be used (see Section 9.2), as cond and rcond are designed only for full matrices.

The chol function for Cholesky factorization behaves in a similar way for sparse
matrices as for full matrices, but the computations are done using sparse data struc-
tures.

For real, sparse symmetric indefinite A the command [L,D,P] = ldl(A,thresh)

computes the factorization PTAP = LDLT , where P is a permutation matrix, L is
unit lower triangular, and D is block diagonal with diagonal blocks of dimension 1 or
2. The pivot threshold thresh, which defaults to 0.01, must lie in the interval [0, 0.5].
The computation is carried out with MA57 from the HSL library [40]. If a fourth
output argument, S, is given, then PTSASP = LDLT , where S is a diagonal scaling
matrix.

The lu function for LU factorization has some extra options not present in the
full case. With up to three output arguments, the same mathematical factorization is
produced as in the full case. A second input argument thresh, as in lu(A,thresh),
sets a pivoting threshold, which must lie between 0 and 1. The pivoting strategy
requires the pivot element to have magnitude at least thresh times the magnitude
of the largest element below the diagonal in the pivot column. The default is 1,
corresponding to partial pivoting, and a threshold of 0 forces no pivoting.

With a fourth output argument lu uses UMFPACK. The general syntax is

[L,U,P,Q] = lu(A,thresh)

15.2 Linear Algebra 253

Here, a factorization PAQ = LU is produced where L is unit lower triangular, U
is upper triangular, and P and Q are permutation matrices. The row permutations
in P are used for numerical stability and the column permutations in Q are used to
reduce fill-in (a zero element becoming nonzero). The threshold thresh has the same
meaning as when there are fewer than four output arguments, but its default is now
0.1 (it can also now be a 1-by-2 vector: see doc lu for the meaning in this case). A
fifth output argument can be given to invoke diagonal row scaling.

Since lu (with two output arguments) and chol do not pivot for sparsity (that is,
they do not use row or column interchanges in order to try to reduce the cost of the
factorizations), it is advisable to consider reordering the matrix before factorizing it.
A full discussion of reordering algorithms is beyond the scope of this book, but we
give some examples.

We illustrate reorderings with the Wathen matrix:

A = gallery('wathen',8,8);

subplot(121), spy(A), subplot(122), spy(chol(A))

The spy plots of A and its Cholesky factor are shown in Figure 15.1. Now we reorder
the matrix using the symmetric reverse Cuthill–McKee permutation and refactorize:

r = symrcm(A);

subplot(121), spy(A(r,r)), subplot(122), spy(chol(A(r,r)))

Note that all the reordering functions return an integer permutation vector rather
than a permutation matrix (see Section 24.3 for more on permutation vectors and
matrices). The spy plots are shown in Figure 15.2. Finally, we try the symmetric
approximate minimum-degree ordering:

m = symamd(A);

subplot(121), spy(A(m,m)), subplot(122), spy(chol(A(m,m)))

The spy plots are shown in Figure 15.3. For this matrix the minimum-degree ordering
leads to the sparsest Cholesky factor: the one with the least nonzeros.

For LU factorization, possible reorderings include

p = colamd(A); p = colperm(A);

after which A(:,p) is factorized.
In the QR factorization [Q,R] = qr(A) of a sparse rectangular matrix A the orthog-

onal factor Q can be much less sparse than A, so it is usual to try to avoid explicitly
forming Q. When given a sparse matrix and one output argument, the qr function re-
turns just the upper triangular factor R: R = qr(A). When called as [C,R] = qr(A,B),
the matrix C = Q’*B is returned along with R. This enables an overdetermined system
Ax = b to be solved in the least-squares sense by

[c,R] = qr(A,b);

x = R\c;

The backslash operator (A\b) uses this method for rectangular A.
The iterative linear system solvers in Table 9.3 are also designed to handle large

sparse systems. See Section 9.9 for details of how to use them. Sparse eigenvalue and
singular value problems can be solved using eigs and svds, which are also described
in Section 9.9. For a real, sparse symmetric matrix the eigenvalues (only) can be

254 Sparse Matrices

0 50 100 150 200

nz = 3137

0

50

100

150

200

0 50 100 150 200

nz = 5041

0

50

100

150

200

Figure 15.1. Wathen matrix (left) and its Cholesky factor (right).

0 50 100 150 200

nz = 3137

0

50

100

150

200

0 50 100 150 200

nz = 4775

0

50

100

150

200

Figure 15.2. Wathen matrix (left) and its Cholesky factor (right) with symmetric
reverse Cuthill–McKee ordering (symrcm).

0 50 100 150 200

nz = 3137

0

50

100

150

200

0 50 100 150 200

nz = 3476

0

50

100

150

200

Figure 15.3. Wathen matrix (left) and its Cholesky factor (right) with symmetric
minimum-degree ordering (symamd).

15.2 Linear Algebra 255

computed by eig, but for all other types of matrix (including complex Hermitian) it
is necessary to use eigs.

The function spparms helps determine or change the internal workings of some
of the sparse factorization functions. Typing spparms by itself prints the current
settings:

>> spparms

No SParse MONItor output.

mmd: threshold = 1.1 * mindegree + 1,

using approximate degrees in A'*A,

supernode amalgamation every 3 stages,

row reduction every 3 stages,

withhold rows at least 50% dense in colmmd.

Minimum-degree orderings used with v4 chol, lu, and qr in \ and /.

Approximate minimum-degree orderings used with CHOLMOD and UMFPACK

in \ and /.

Pivot tolerance of 0.1 used by UMFPACK in \ and /.

Backslash uses band solver if band density is > 0.5

UMFPACK used for lu in \ and /.

Symmetric pivot tolerance of 0.001 used by UMFPACK in \ and /.

Pivot tolerance of 0.01 used by MA57 in \ and /.

These parameters should not normally need to be adjusted.

The MATLAB statement x = A\b for a sparse matrix A is a

simple one-character interface to perhaps over

120 000 lines of high-quality software for sparse direct methods.

— TIMOTHY A. DAVIS, SIVASANKARAN RAJAMANICKAM,

and WISSAM M. SID-LAKHDAR,

A Survey of Direct Methods for Sparse Linear Systems (2016)

How much of the matrix must be zero for it to be considered sparse

depends on the computation to be performed,

the pattern of the nonzeros,

and even the architecture of the computer.

Generally, we say that a matrix is sparse

if there is an advantage in exploiting its zeros.

— I. S. DUFF, A. M. ERISMAN, and J. K. REID,

Direct Methods for Sparse Matrices (1986)

Sparse matrices are created explicitly rather than automatically.

If you don’t need them, you won’t see them mysteriously appear.

— The MATLAB EXPO: An Introduction to MATLAB,

SIMULINK and the MATLAB Application Toolboxes (1993)

An objective of a good sparse matrix algorithm should be:

The time required for a sparse matrix operation should be

proportional to the number of arithmetic operations on nonzero quantities.

We call this the “time is proportional to flops” rule;

it is a fundamental tenet of our design.

— JOHN R. GILBERT, CLEVE B. MOLER, and ROBERT S. SCHREIBER,

Sparse Matrices in MATLAB: Design and Implementation (1992)

Chapter 16

More on Coding

16.1. Elements of Coding Style

As you use MATLAB you will build up your own collection of program files. Some
may be short scripts that are intended to be used only once, but others will be of
potential use in future work. Based on our experience with MATLAB we offer some
guidelines on making program files easy to use, understand, and maintain.

In Chapter 7 we explained the structure of the leading comment lines of a function,
including the H1 line. Adhering to this format and fully documenting the function in
the leading comment lines is vital if you are to be able to reuse and perhaps modify
the function some time after writing it. A further benefit is that writing the comment
lines forces you to think carefully about the design of the function, including the
number and ordering of the input and output arguments.

We recommend following the practice of MATLAB itself and using the active voice
and the present tense in comment lines. For example, help integral produces

Q = integral(FUN,A,B) approximates the integral of function FUN ...

rather than “is an approximation to the integral of” or “will approximate the
integral of”.

It is helpful to include in the leading comment lines an example of how the function
is used, in a form that can be cut and pasted into the command line. MATLAB
functions that provide such examples include fplot, fzero, meshgrid, and integral.

You may want to include a pointer to other related functions. This can be done
by including a final leading comment line of the form

% See also fun1, fun2, fun3

Assuming that fun1, fun2, and fun3 are functions on the MATLAB path or in the
current directory, the help command displays these function names as hyperlinks to
the help for the corresponding functions.

In formatting the code, it is advisable to follow the example of the functions
provided with MATLAB: that is, to

• indent so that comment lines after the H1 line start in column 5;

• put spaces around logical operators and = in assignment statements;

• use one statement per line (with exceptions such as a short if, or a related
sequence of assignments);

• indent to emphasize if, for, switch, and while structures (as provided auto-
matically by the MATLAB Editor/Debugger—see Section 7.2);

257

258 More on Coding

• use variable names beginning with capital letters for matrices.

Compare the code segment

if stopit(4)==1

% Right-angled simplex based on coordinate axes.

alpha=norm(x0,inf)*ones(n+1,1);

for j=2:n+1, V(:,j)=x0+alpha(j)*V(:,j); end

end

with the more readable

if stopit(4) == 1

% Right-angled simplex based on coordinate axes.

alpha = norm(x0,inf)*ones(n+1,1);

for j = 2:n+1

V(:,j) = x0 + alpha(j)*V(:,j);

end

end

In this book we usually follow these rules, occasionally breaking them to save space.
A rough guide to choosing variable names is that the length and complexity of a

name should be proportional to the variable’s scope (the region in which it is used).
Loop index variables are typically one character long because they have local scope
and are easily recognized. Constants used throughout a code file merit longer, more
descriptive names. For long variable names comprising two or more words joined
together, two commonly used styles are

• camel case: stepSizeLimit (lower camel case) or StepSizeLimit (upper camel
case);

• pothole case (or snake case): step_size_limit.

A MATLAB function that helps in choosing variable names, especially in an auto-
mated way, is matlab.lang.makeValidName. See the help for the function for some
interesting examples of its use.

16.2. Cleaning Up

It is good practice for your functions to leave the MATLAB environment in the same
state it was in when the files began. If the MATLAB path, warning states, or graphics
defaults are changed they should be restored before exit. A general clean up technique
that can be used is illustrated by the code

warns = warning('query','all');

temp = onCleanup(@()warning(warns));

warning('off','all');

In Section 14.2 we suggested issuing the command warning(warns) at the end of
the code, after assigning warns as in this example. The use of onCleanup, which is
designed for functions rather than scripts, causes the anonymous function that is its
argument to be executed once the variable temp is destroyed, that is, upon termination
of the function. The key point is that even if termination is due to an error or an exit

16.3 Checking and Comparing Code Files 259

forced by the user hitting Ctrl-c the onCleanup action will be invoked. For a quick
illustration of the function in action, try the following commands in the Command
Window:

>> beep % Check speaker volume is turned up.

>> temp = onCleanup(@()beep)

temp =

onCleanup with properties:

task: @()beep

>> clear temp % Causes a beep.

For various other examples of the use of this clean up technique see doc onCleanup.

16.3. Checking and Comparing Code Files

MATLAB provides some useful tools for automatically checking and comparing code
files. The checkcode function reads a code file and produces a report of potential
errors and problems, and also makes suggestions for improving the efficiency and
maintainability of the code. The function badfun in Listing 16.1 is perfectly legal
MATLAB:

>> badfun(1,2);

x =

2.2361

However, it contains several weaknesses that checkcode detects:

>> checkcode badfun

L 1 (C 13): The function return value 'y' might be unset.

L 1 (C 18-22): Function name 'badfu' is known to MATLAB by its

file name: 'badfun'.

L 4 (C 15): Use || instead of | as the OR operator in (scalar)

conditional statements.

L 4 (C 29): The value assigned to variable 'c' might be unused.

L 6 (C 3): Terminate statement with semicolon to suppress output

(in functions).

The output refers to lines (L) and columns (C). The third reported problem refers to
the fact that || is preferred for tests between scalars (see Section 6.1). As this example
shows, checkcode is good at detecting variables that are never assigned or used, which
is useful because these problems can be hard to spot in longer codes. The MATLAB
Editor automatically highlights code to indicate some of the information produced
by checkcode; hover the cursor over the highlighted code to see the corresponding
message.

Another feature of checkcode is that with the ’-cyc’ argument it computes the
cyclomatic complexity, or McCabe complexity, of each function in a code file [76], [120].
Here, we check the complexity of the integral2 function:

>> checkcode integral2 -cyc

L 1 (C 14-22): The McCabe complexity of 'integral2' is 16.

L 118 (C 16-23): The McCabe complexity of 'outclass' is 1.

L 127 (C 14-26): The McCabe complexity of 'interiorPoint' is 9.

260 More on Coding

Listing 16.1. Script badfun.

function [x,y] = badfu(a,b,c)

%BADFUN Function on which to illustrate checkcode.

if nargin < 3 | isempty(c), c = 1; end

x = sqrt(a^2+b^2)

Code Complexity
A simple measure of the complexity of a MATLAB function is the number
of executable lines of source code. The cyclomatic complexity of a function
is defined in terms of a directed graph built from the code and turns out
to be equal to one plus the number of predicates (logical tests). Smaller
values of this measure are thought to correspond to code that is less likely
to contain bugs and to be easier to test and maintain. One way to reduce
the measure is to split a function into separate, simpler functions.

The companion function mlintrpt runs checkcode on all the code files in the cur-
rent directory and reports the results in the MATLAB Web browser, with hypertext
links to the file names and line numbers. It can also be called on a single code file.
This function can also be invoked from the Reports menu of the dropdown list in the
Current Folder browser.

Two code files can be compared with the visdiff function, which produces a
report in the MATLAB Web browser containing listings of the two code files with
differences marked.

16.4. Profiling

MATLAB has a profiler that reports, for a given sequence of computations, how much
time is spent in each line of each code file and how many times each line is executed,
how many times each function is called, and the results of running checkcode (see
Section 16.3). Profiling has several uses.

• Identifying “hot spots”: those parts of a computation that dominate the execu-
tion time. If you wish to optimize the code then you should concentrate on the
hot spots.

• Spotting inefficiencies, such as code that can be taken outside a loop.

• Revealing lines in a code that are never executed. This enables you to spot
unnecessary code and to check whether your test data fully exercises the code.

To illustrate the use of the MATLAB Profiler, we apply it to the membrane function
(used on p. 116):

profile on

A = membrane(1,250);

profile viewer

profile off

16.5 P-Code 261

Figure 16.1. profile viewer report for membrane example.

The profile viewer command generates an HTML report that is displayed in the
Profiler window. Figure 16.1 shows the result. Actually, this is the result from the
second run of this code. It is always a good idea to discard the first run, since it
includes compilation overheads and MATLAB or system caching overheads. Clicking
on the membrane link in Figure 16.1 produces Figure 16.2, which shows only the first
part of a long report. The profile reveals that membrane spends most of its time
evaluating Bessel functions. Note also the section toward the bottom of Figure 16.2
headed “Coverage results”. This reveals how many lines of the code were and were
not executed. This is useful information, as in testing it is desirable that as much
code as possible is exercised by the tests.

Next, consider the script ops in Listing 16.2. We profiled the script in order to
compare the relative costs of the elementary operations +, -, *, / and the elementary
functions sqrt, exp, sin, tan.

profile on

ops

profile viewer

profile off

The report is shown in Figure 16.3. The exponential and trigonometric functions are
much more costly than the other operations.

16.5. P-Code

The pcode command creates P-code files, which have a .p extension, from code files.
A P-code file is functionally equivalent to, and runs at the same speed as, the code file
from which it was produced, but it is obfuscated: it is a binary file that is not readable
when viewed in an editor. If both P-code and the original code file are present then
the P-code takes precedence.

The original code file cannot be reconstructed from the P-code file. In particular,
all comments are lost.

P-code is useful when you want to distribute code to others but do not want the
recipient to see the source code or to be able to change it. An alternative way to

262 More on Coding

Figure 16.2. More from profile viewer report for membrane example.

16.5 P-Code 263

Listing 16.2. Script ops.

%OPS Profile this file to check costs of various elementary ops and funs.

rng(1)

n = 500;

a = 100*rand(n);

b = randn(n);

for i = 1:100

a+b;

a-b;

a.*b;

a./b;

sqrt(a);

exp(a);

sin(a);

tan(a);

end

Figure 16.3. profile viewer report for ops example.

264 More on Coding

protect your source code is to compile it with the MATLAB Compiler and distribute
the executable code (which runs independently of MATLAB).

16.6. Source Control

It is good practice to use a source control (or version control) system to store snapshots
of your code files as you develop them. Such a system allows you to go back to earlier
versions of files, perhaps because you realize you have introduced errors and wish to
revert to a working version; to annotate what changes were made with each snapshot,
thus documenting your progress; and to use branches to manage different lines of
development. Source control does not replace backup procedures but does provide a
way to recover from unintended changes, such as deletion or overwriting of a file.

MATLAB provides an interface to source control that integrates with the open
source Git and Subversion (SVN) systems. It is accessed from the Current Folder
browser. However, if you are confident in working at the command line we recommend
handling source control outside MATLAB, since you can then do all your source
control (MATLAB, LATEX, plain text files, etc.) from the same interface. You do
need, however, to install the source control software yourself. As a simple example,
using Git at the Windows command line we set up source control for this book in the
following way:

cd \matlab_guide_3ed

git init

git add *.tex matlab*.m

git commit -m "First commit."

...

git commit -a -m "Message for second commit."

Documentation for Git and SVN is readily available on the web.

16.7. Live Editor

The Live Editor is an interactive environment for editing and running MATLAB code
that allows you to see your results together with the code that produced them. It
supports narrative text, with formatting and LATEX typesetting of equations. The
Live Editor works with live scripts, which are files with a .mlx extension. You can
create a live script from the New menu option on the Home tab of the MATLAB
Toolstrip, or by typing (for example) edit myscript.mlx at the MATLAB prompt.

Live scripts are broken into sections, each of which can be evaluated and the
output inserted at the end of the section. The toolbar on the Live Editor provides
tools for inserting code, text, equations, images, and hyperlinks, and for executing
either the whole script or sections of it.

A live script can be exported as a regular .m file, containing the MATLAB code
with the text in comment lines, or as an HTML or PDF file. In the HTML and
PDF formats the document closely resembles what is seen in the Live Editor, but the
output is frozen in that the code cannot be rerun. These export options are useful
for sharing documents on the web and with people who do not have MATLAB, and
in particular they are useful in teaching, both for distributing course material and as
a way for students to hand in their work.

16.8 Creating a Toolbox 265

Listing 16.3. Script calculus.m.

%% Functions of Several Variables

%% Continuity

% Consider the function

%

% $$F(x) = F(x_1,x_2) = \frac{x_1x_2}{x_1^2+x_2^2}.$$

%

% It is continuous away from the origin, but what happens at the origin,

% where F is not defined? We can examine the function graphically, using

fsurf(@(x_1,x_2) x_1.*x_2./(x_1.^2+x_2.^2), [-1 1])

%%

% The surface has large curvature and it needs to be rotated to see what

% is happening at the origin (click the image in the Live Editor to open up a

% figure window, select the Rotate 3D icon, then rotate the image using

% the mouse); in doing so, a sharp drop is observed. To gain more

% insight we examine the contours:

fcontour(@(x_1,x_2) x_1.*x_2./(x_1.^2+x_2.^2), [-1 1])

%%

% Contours join points (x_1,x_2) of equal height $F(x_1,x_2)$. It is clear

% from the contours that F attains many different values close to the origin,

% and we therefore expect that F is not continuous at the origin, no matter

% how $F(0,0)$ is defined.

Figure 16.4 shows the first part of a live script as it appears in the Live Editor.
Listing 16.3 shows how the same live script looks when exported as a .m file, and
Figure 16.5 shows the first page of the exported PDF file.

To a large extent, live scripts remove the need to use the publish command that
was introduced earlier in the history of MATLAB. The publish command takes as
argument a code file and exports it to HTML, PDF, Word (.doc), LATEX, PowerPoint
(.ppt), or XML format. If the code file has not been specially formatted, the output
consists of the code file followed by its output. If the code file is broken into cells,
each of which begins with a line consisting solely of two percent signs, then the
exported document contains code interspersed with text and output. When a live
script is exported as a .m file the same cell formatting is generated, as in Figure 16.3.
The benefit of the Live Editor is that it provides a WYSIWYG (“what you see is
what you get”) interface, so that the user does not need to remember the formatting
requirements.

Trefethen’s book [166] was produced using the publish command, and the .m files
(one per chapter) can be downloaded from the book’s web page.

A kind of inverse to exporting or publishing is the grabcode function. Given the
name of an exported or published HTML file it extracts the MATLAB code contained
in it and opens it in the MATLAB Editor.

16.8. Creating a Toolbox

If you develop a number of functions with a common theme that you wish to group
together, and possibly distribute to others, you should consider creating a toolbox. A
toolbox is simply a collection of MATLAB codes living in the same directory, along

266 More on Coding

Figure 16.4. Calculus example in the Live Editor.

16.8 Creating a Toolbox 267

Functions of Several Variables

Continuity

Consider the function

It is continuous away from the origin, but what happens at the origin, where is not defined? We can
examine the function graphically, using

fsurf(@(x_1,x_2) x_1.*x_2./(x_1.^2+x_2.^2), [-1 1])

The surface has large curvature and it needs to be rotated to see what is happening at the origin (click
the image in the Live Editor to open up a figure window, select the Rotate 3D icon, then rotate the image
using the mouse); in doing so, a sharp drop is observed. To gain more insight we examine the contours:

fcontour(@(x_1,x_2) x_1.*x_2./(x_1.^2+x_2.^2), [-1 1])

Figure 16.5. First page of PDF file exported from the live script in Figure 16.4.

268 More on Coding

with the special files Contents.m and, possibly, readme.m. The file Contents.m is a
script of comments containing the names of the code files in the toolbox with a short
description of each, and its leading lines give the version and copyright information
for the toolbox.

For example, we could create a toolbox in a directory mytoolbox on the MATLAB
path, with a Contents.m file beginning as follows:

% Mytoolbox.

% Version 1.1 5-Mar-2017

% Copyright (c) 2017 by A. N. Other

%

% myfun1 - My first useful function.

% myfun2 - My second useful function.

Provided the precise format of the first two lines is followed, typing ver mytoolbox

lists some version information about MATLAB followed by

Mytoolbox Version 1.1

Type doc mytoolbox or help mytoolbox to view Contents.m.
A Contents.m file can be generated automatically—and an existing file checked

against the H1 lines of the code files in the directory—with the contentsrpt function.
An alternative invocation is by selecting Contents Report from the Reports menu in
the dropdown list of the Current Folder browser.

An automated way of packaging a toolbox is provided by Package Toolbox in the
Add-Ons menu of the Home tab. A dialog box asks you to fill in information about
the toolbox and then a file with a .mltbx extension is created. The toolbox can be
installed by double-clicking that file.

16.9. Distributing Code Files

When you give someone else a code myfun.m that you have written, you also need
to give them all the codes that it calls that are not provided with MATLAB and
you need to tell them which toolboxes (if any) are required. This information can be
determined by typing

[Mfiles,tlbxs] = matlab.codetools.requiredFilesAndProducts('myfun')

which returns a list of the codes that are called by myfun or by a function called by
myfun, and so on, along with a list of required toolboxes. Note that the input to
this function must be a string, not a function handle. Another way to obtain this
information is with the inmem command, which lists all codes that have been parsed
into memory. If you begin by clearing all functions (clear functions), run the code
in question, and then invoke inmem, you can deduce which codes have been called.
Finally, deprpt lists dependencies for all the codes in the current directory, showing
the results in a MATLAB Web browser.

All the tools mentioned in this section can also be invoked from the Reports menu
of the dropdown list in the Current Folder browser.

An automated way of packaging a function and its dependencies into an App, to
appear on the Apps tab, is with Package App in the Apps tab (callable from the

16.10 Unit Tests 269

Command Window with function matlab.apputil.package). This creates a single
file with an .mlappinstall extension that allows easy installation.

An excellent way to make your codes available, whether as a toolbox, as individual
codes, or as a packaged app, is via MATLAB Central File Exchange. To post files
there you will need a MathWorks account. Click on the “Submit a File” button and
you can create a submission comprising one or more codes.

An alternative is to put the files in a GitHub repository and give File Exchange
the name of the repository; File Exchange will then copy the files across and will
update them when the GitHub repository changes. GitHub is a website that hosts
Git repositories. The codes from this book are maintained in a Git repository hosted
on GitHub, which can be reached via the book’s web page, whose address is given in
the Preface.

16.10. Unit Tests

Unit testing is a testing approach in which individual units of code (in MATLAB
these are typically functions) are tested separately. Ideally, the testing is automated
so that the tests can be run repeatedly as code is developed. MATLAB has a powerful
unit testing framework for creating and running suites of tests. It can also run a suite
of tests in parallel using the Parallel Computing Toolbox.

We give just one simple example of unit testing. Script test_acos in Listing 16.4
tests the MATLAB acos function to see whether it correctly returns values of the
principal inverse cosine. The test script is broken up into sections separated by lines
beginning with %%; each section contains independent tests that may call on shared
variables set up in the opening lines up to the first line that begins %%. The script
makes use of the assert function described in Section 14.1. Most of the tests are self-
explanatory given the definition of the principal inverse cosine [4]. The tolerance in
the final test includes a term that accounts for the growth of errors in the evaluation
of the test and is justified in [30].

We could simply run test_acos and see whether it runs to completion or ter-
minates with Assertion failed. The problem is that it will stop on the first failed
assertion, whereas it is more useful if all the tests are run and a list of failed assertions
is produced. This is achieved using the runtests function:

>> results = runtests('test_acos.m')

Running test_acos

.....

Done test_acos

results =

1×5 TestResult array with properties:

Name

Passed

Failed

Incomplete

Duration

Details

Totals:

270 More on Coding

5 Passed, 0 Failed, 0 Incomplete.

0.02791 seconds testing time.

All the tests have passed. We now introduce a test that must fail by adding

assert(acos(1) == 1,'This acos(1) test should fail!')

at the end of the Branch points block. Here, we have used the second argument of
assert to provide an error message. The output is now

>> results = runtests('test_acos.m')

Running test_acos

...

===

Error occurred in test_acos/BranchPoints and it did not run to completion.

Error ID:

''

Error Details:

Error using test_acos (line 33)

This acos(1) test should fail!

===

..

Done test_acos

Failure Summary:

Name Failed Incomplete Reason(s)

===

test_acos/BranchPoints X X Errored.

results =

1×5 TestResult array with properties:

Name

Passed

Failed

Incomplete

Duration

Details

Totals:

4 Passed, 1 Failed, 1 Incomplete.

0.033807 seconds testing time.

The offending block is identified by the name that follows the %% (if no name is given,
MATLAB will introduce its own numbering of tests, which can be difficult to match
to the block in question).

16.10 Unit Tests 271

Listing 16.4. Script test acos.

%TEST_ACOS Test acos function.

% Test that f(z) = acos(z) is the principal arc cosine function.

% Setup

rng(1)

n = 1e4;

x1 = linspace(-1,1,n);

x2 = linspace(-1,-1e4,n);

%% Interval 1

% For real x on [-1,1], f(x) must be real and between -pi and pi.

y = acos(x1);

assert(all(isreal(y)))

assert(all(y >= -pi))

assert(all(y <= pi))

%% Interval 2

% Test x on branch cut [-inf,-1].

y = acos(x2);

assert(all(real(y) == pi))

assert(all(imag(y) <= 0))

%% Interval 3

% Test x on branch cut [1,inf].

y = acos(-x2);

assert(all(real(y) == 0))

assert(all(imag(y) >= 0))

%% Branch points

% Test values at branch points.

assert(acos(1) == 0)

assert(acos(-1) == pi)

%% Complex random arguments

x = randn(n,1) + 1i*rand(n,1);

acosx = acos(x);

x1 = cos(acosx);

assert(all(abs(x-x1) <= 2*eps*(abs(x) + abs(acosx.*sin(acosx)))))

272 More on Coding

This example gives just a hint of the capabilities of the unit test framework,
which stem from the powerful object-oriented features that are not used here. See
doc testing frameworks for the details.

A performance testing framework is available for automating the testing of the
speed of codes. See the function runperf and doc testing frameworks.

If we wish to count lines of code,

we should not regard them as lines produced but as lines spent.

— EDSGER W. DIJKSTRA, On the Cruelty of Really Teaching Computing Science (1998)

Readability of code is now my first priority.

It’s more important than being fast, almost as important as being correct,

but I think being readable is actually the most likely way of making it correct.

— DOUGLAS CROCKFORD, in Coders At Work (2009)

Experienced MATLAB quality engineers . . . routinely write test cases with

empty input matrices or NaN and Inf values....

I anticipate possible coding errors for

constant-valued images or those that have a single row or column.

— STEVEN L. EDDINS, Automated Software Testing for MATLAB (2009)

I’ve become convinced that all compilers written from now on

should be designed to provide all programmers with feedback indicating

what parts of their programs are costing the most.

— DONALD E. KNUTH, Structured Programming with go to Statements (1974)

Instrument your programs.

Measure before making “efficiency” changes.

— BRIAN W. KERNIGHAN and P. J. PLAUGER,

The Elements of Programming Style (1978)

Arnold was unhappily aware that the complete Jurassic Park program contained

more than half a million lines of code,

most of it undocumented, without explanation.

— MICHAEL CRICHTON, Jurassic Park (1990)

Chapter 17

Advanced Graphics

The graphics functions described in Chapter 8 can produce a wide range of output
and are sufficient to satisfy the needs of many MATLAB users. These functions are
part of an object-oriented graphics system that provides full control over the way
MATLAB displays data. A knowledge of graphics objects is useful if you want to
fine-tune the appearance of your plots, and it enables you to produce displays that
are not possible with the existing functions. This chapter provides an introduction to
graphics objects. More information can be found in the MATLAB documentation.

17.1. Objects, Handles, and Properties

Graphs are built from objects organized in a hierarchy, as shown in Figure 17.1. The
Root object corresponds to the whole screen. Underneath the Root are Figure objects,
corresponding to figure windows, and under them are Axes objects. An Axes object
is a region of the figure window with a coordinate system, in which other objects such
as lines and text are displayed.

Each specific instance of an object has a unique identifier called a handle. To
illustrate, consider the simple example

>> h = plot(1:10,'o-')

This produces the left-hand plot in Figure 17.2. Now we look at the handle, h:

>> h

h =

Line with properties:

Color: [0 0.4470 0.7410]

LineStyle: '-'

LineWidth: 0.5000

Marker: 'o'

MarkerSize: 6

MarkerFaceColor: 'none'

XData: [1 2 3 4 5 6 7 8 9 10]

YData: [1 2 3 4 5 6 7 8 9 10]

ZData: [1×0 double]

Show all properties

In the Command Window, all properties in the last line is a hyperlink that, when
clicked, shows a number of additional properties. Another way to obtain the list of all
properties is to type get(h). To see what type of variable h is, we look at its class:

273

274 Advanced Graphics

Image Light Line Patch Rectangle Surface Text

Axes UI Objects

Figure

Root

Figure 17.1. Hierarchical structure of graphics objects (simplified).

>> class(h)

matlab.graphics.chart.primitive.Line

This full class name shows that h is a handle to an object referencing a line. We can
confirm that h is a handle to a graphics object using isgraphics:

>> isgraphics(h)

ans =

logical

1

If we close the graphics window, the variable h still exists but no longer references a
valid graphics object:

>> close

>> isgraphics(h)

ans =

logical

0

A handle provides access to the various properties of an object that govern its
appearance, which can be assigned or viewed using the dot notation. We now repeat
the above plot and change some of the line properties:

h = plot(1:10,'o-');

h.LineWidth = 1.5;

h.MarkerSize = 8;

h.MarkerFaceColor = 'red';

The result is in the right-hand plot in Figure 17.2.
Tab completion works with graphics object properties: if you type h followed by

a period and hit tab then a window pops up with a list of completions.
The previous plot could have been obtained by providing the appropriate property

name–value pairs in the plot statement, as we did in Chapter 8. One advantage of

17.1 Objects, Handles, and Properties 275

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 17.2. Left: original. Right: modified via the line object.

the latter approach is that property names are case insensitive ('LineWidth' and
'linewidth' have the same effect), whereas with the dot notation the exact case
must be used (h.LineWidth). However, the object system is much more powerful, as
we will see.

Another way to assign properties to a graphics object is with the set command
(which predates the more recent dot notation). For example, the line width assign-
ment in the previous example could equally well be written

set(h,'LineWidth',1.5);

A useful feature of set is that it can return all possible values for a property:

>> set(h,'LineStyle');

'-'

'--'

':'

'-.'

'none'

Now consider the following code, which produces Figure 17.3:

x = linspace(0,2*pi,35);

a1 = subplot(2,1,1); % Axes object.

l1 = plot(x,sin(x),'x'); % Line object.

title('Sine curve')

a2 = subplot(2,1,2); % Axes object.

l2 = plot(x,cos(x).*sin(x)); % Line object.

tx2 = xlabel('x'); ty2 = ylabel('y'); % Text objects.

When the following code is executed it modifies properties of objects to produce
Figure 17.4:

a1.Box = 'off'; % box off.

a1.XTick = [];

276 Advanced Graphics

a1.YAxisLocation = 'right';

a1.TickDir = 'out';

l1.Marker = '<';

a1.YGrid = 'on';

% Set dotted gridlines and make them more prominent:

a1.GridLineStyle = ':';

a1.GridColor = 0*[1 1 1];

a1.GridAlpha = 1;

a1.TitleFontSizeMultiplier = 1;

a2.Position = [0.2 0.15 0.65 0.35];

a2.XLim = [0 2*pi]; % xlim([0 2*pi]).

a2.FontSize = 14;

a2.XTick = [0 pi/8 pi/4 pi/2 pi 2*pi];

% Or xticks(...) for previous line and xticklabels(..) for the next.

a2.XTickLabel = {'0','\pi/8','\pi/4','\pi/2','\pi','2\pi'};

a2.XScale = 'log';

a2.LabelFontSizeMultiplier = 1.5; % For x- and y-axis labels.

l2.LineWidth = 6;

tx2.FontAngle = 'italic'; ty2.Rotation = 0;

ty2.FontAngle = 'italic';

Some of the effects of these set commands can be produced using commands discussed
in Chapter 8, as indicated in the comments, or by appending property name–value
pairs to argument lists of plot and text. For example, box off can be used in place
of a1.Box = 'off' provided that the first Axes object is current. However, certain
effects, such as changing the tick direction, can be conveniently achieved only by using
the objects.

The properties altered here are mostly self-explanatory. We mention some excep-
tions. The Position property of Axes is specified by a vector of the form [left

bottom width height], where left and bottom are the distances from the left edge
and bottom edge, respectively, of the figure window to the bottom left corner of the
Axes rectangle, and width and height define the dimensions of the rectangle. The
units of measurement are defined by the Units property, whose default is normalized,
which maps the lower left corner of the figure window to (0, 0) and the upper right
corner to (1.0, 1.0). By default, titles are displayed in bold and at a font size 10%
bigger than the current FontSize setting; the TitleFontSizeMultiplier property
of the Axes object is a scale factor that controls this relation and here we change it
from its default value of 1.1. Similarly, the LabelFontSizeMultiplier property of
the Axes object controls the scaling of the fonts used for the x-, y-, and z-axis labels.

An object can be deleted by passing its handle to the delete function. Thus
delete(l1) removes the sine curve from the top plot in Figure 17.4 and delete(tx2)

removes the x-axis label from the bottom plot.
Generally, if you plan to change the properties of an object after creating it then

you should save the handle when you create it, as in the example above. However, the
handles of the current Axes, Figure, and object can be retrieved using gca, gcf, and
gco, respectively. In the following example we check the current and possible values
of the FontWeight property for the current Axes and then change the property to
bold:

>> get(gca,'FontWeight')

17.1 Objects, Handles, and Properties 277

0 1 2 3 4 5 6 7

-1

-0.5

0

0.5

1
Sine curve

0 1 2 3 4 5 6 7

x

-0.5

0

0.5

y

Figure 17.3. Straightforward use of subplot.

-1

-0.5

0

0.5

1
Sine curve

/8 /4 /2 2

x

-0.5

0

0.5

y

Figure 17.4. Modified version of Figure 17.3 postprocessed by modifying object prop-
erties.

278 Advanced Graphics

ans =

normal

>> set(gca,'FontWeight')

2×1 cell array

'normal'

'bold'

>> set(gca,'FontWeight','bold')

The “current object” whose handle is returned by gco is the object last clicked on
with the mouse. Thus if we want to change the marker to ’*’ for the curve in the
upper plot of Figure 17.4 we can click on the curve and then type

>> set(gco,'Marker','*')

In addition to setting graphics properties from the command line or in codes it is
possible to set them interactively. A particular graphic object can be edited by first
enabling plot editing—by clicking on the Edit Plot icon in the figure window toolbar,
or selecting Tools-Edit Plot, or typing plotedit in the Command Window—and then
double-clicking on the object. Experimenting with plot edit mode is an excellent way
to learn about graphics objects.

The importance of the hierarchical nature of the graphics system is not com-
pletely apparent in the simple examples described above. A particular object, say the
Root, contains the handles of all its children, which makes it possible to traverse the
tree structure, using get(h,'Children'), get(h,'Parent'), and the findobj and
findall functions. Furthermore, it is possible to set default values for properties,
and if these are set on a particular Axes, for example, they are inherited by all the
children of that Axes. Some of these aspects are described in the following sections.

The GUI tools are beyond the scope of this book (type help uitools for a list
of the relevant functions). However, we mention one GUI function that is of broad
interest: waitbar displays a graphical bar in a window that can be used to show the
progress of a computation. Its usage is illustrated by (see also Listing 1.4)

h = waitbar(0,'Computing...')

for j = 1:n

% Some computation ...

waitbar(j/n) % Set bar to show fraction j/n complete.

end

close(h)

17.2. Root and Default Properties

The handle of the Root object is returned by groot. The assignable root properties
can be determined using get(groot).

Typing get(groot,'Factory') returns in a structure all the factory-defined val-
ues of all user-settable properties, of which there are over 1600. The default value
for the object property ObjectTypePropertyName can be obtained with the command
get(groot,'DefaultObjectTypePropertyName'). For example:

17.3 Animation 279

>> get(groot,'DefaultLineMarkerSize')

ans =

6

Typing set(groot,'DefaultObjectTypePropertyName') sets the default value for
ObjectTypePropertyName, and since the root handle is specified this default applies
to all levels in the hierarchy. This command is useful for setting default property
values at the start of a session. For example, before giving a presentation with a data
projector we might type

set(groot,'defaulttextfontsize',14)

set(groot,'defaultaxesfontsize',14)

set(groot,'defaultlinemarkersize',10)

set(groot,'defaultlinelinewidth',2)

set(groot,'defaulttextfontweight','bold')

set(groot,'defaultaxesfontweight','bold')

in order to make the MATLAB graphics more readable to the audience. (It obviously
makes sense to create a code file containing these commands.) On the other hand,
before generating PDF figures for inclusion in a paper we might type

set(groot,'defaulttextfontsize',12)

set(groot,'defaultaxesfontsize',12)

set(groot,'defaultlinemarkersize',8)

set(groot,'defaultlinelinewidth',1)

The advantage of these commands is that they make it unnecessary to append mod-
ifiers such as 'FontSize',12 to every title, xlabel, and so on.

The factory settings can be restored with commands of the form

set(groot,'defaultlinelinewidth','factory')

To reset all properties to the factory values type

reset(groot)

17.3. Animation

Two types of animation are possible in MATLAB. A sequence of figures can be saved
and then replayed as a movie, and an animated plot can be produced by manipulating
the XData, YData, and ZData properties of objects. We give one example of each type.

To create a movie, you draw the figures one at a time, use the getframe function
to save each one as a pixel snapshot in a structure, and then invoke the movie function
to replay the figures. Here is an example:

clear % Remove existing variables.

Z = peaks; surf(Z)

axis tight manual % Manual to freeze axis between frames.

set(gca,'nextplot','replacechildren')

disp('Creating the movie...')

n = 25;

F(n+1) = struct('cdata',[],'colormap',[]); % Preallocate struct.

280 Advanced Graphics

-5

40

0

30 40

5

3020
20

10
10

Figure 17.5. One frame from a movie.

for j = 1:n+1

surf(cos(2*pi*(j-1)/n).*Z,Z)

F(j) = getframe;

end

disp('Playing the movie 2 times ...')

movie(F,2)

Figure 17.5 shows one intermediate frame from the movie. The set command causes
all surf plots after the first to leave the Axes properties, such as axis tight manual
and the grid lines, unaltered. The movie is replayed p times with movie(F,p).

The code above can be modified to create a movie viewable outside MATLAB as
follows. Before the for loop, set up a VideoWriter object, then open the file, with

v = VideoWriter('mymovie','MPEG-4');

open(v)

Now write frames using

writeVideo(v,F(j))

within the loop. Finally, close the file with

close(v)

at the end of the code. The file mymovie.mp4 is created in the current directory. The
VideoWriter function supports a variety of output formats.

The second type of animation is most easily obtained using the functions comet

and comet3. They behave like limited versions of plot and plot3, differing in that
the plot is traced out by a “comet” consisting of a head (a circle), a body (in one
color), and a tail (in another color). For example, try

x = linspace(-2,2,500);

y = exp(x).*sin(1./x);

comet(x,y)

17.4 Examples 281

-3 -2 -1 0 1 2 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 17.6. Animated figure upon completion.

We give a simple example to illustrate the principle used by comet. This example can
be adapted for use in situations in which the data must be plotted as it is generated,
as when solving a differential equation, for example (see the MATLAB demonstration
function lorenz, mentioned on p. 12):

x = linspace(-pi,pi,2000);

y = cos(tan(x)) - tan(sin(x));

h = animatedline('Marker','.','Color','b','MarkerSize',5);

axis([min(x) max(x) min(y) max(y)])

for k = 1:length(x)

addpoints(h,x(k),y(k))

drawnow

end

This code creates an AnimatedLine object then adds points to it using addpoints

within the loop. The points accumulate to produce the final plot shown in Figure 17.6.
The drawnow command is necessary in order for the figure to be updated on the screen
after each call to addpoints, and it has options that control the speed of the updates.

17.4. Examples

In this section we give some practical examples of how to manipulate graphics objects
in order to produce customized graphics.

Suppose that you wish to use a nonstandard font size (say, 16 point) throughout
a Figure object. Explicitly setting the FontSize property for each Text object and
each Axes is tedious. Instead, after creating the figure, you can type

h = findall(gcf,'type','text'); set(h,'FontSize',16)

h = findall(gcf,'type','axes'); set(h,'FontSize',16)

282 Advanced Graphics

Note that using findobj in the first line would not produce any change to the
xlabel, ylabel, or title. The reason is that these text objects are created with
the HandleVisibility property set to off, which makes them invisible to findobj,
but not to findall. (Look at the code with type findall to gain some insight.) For
this reason, however, findall should be used with caution as it may expose to view
handles that have intentionally been hidden by an application, so manipulating the
corresponding objects could produce strange results.

The automatic choices of tick marks and axis limits are not always the most
appropriate. The upper plot in Figure 17.7 shows the relative distance from IEEE
single-precision numbers x ∈ [1, 16] to the next larger floating-point number. The tick
marks on the x-axis do not emphasize the important fact that interesting changes
happen at a power of 2. The lower plot in Figure 17.7 (which is essentially [70,
Fig. 2.1]) differs from the upper one in that the following commands were appended:

set(gca,'xtick',[1 2 4 8 16])

set(gca,'TickLength',[0.02 0.025])

set(gca,'FontSize', 12)

set(findall(gcf,'type','line'),'LineWidth',1.25)

The first set command specifies the location of the ticks on the x-axis and the second
increases the length of the ticks (to 0.02 for 2D plots and 0.025 for 3D plots, in units
normalized relative to the longest of the visible x-, y-, or z-axis lines). The third
command sets a 12-point font size for the tick labels and x-axis label. The final
command increases the thickness of the line; this would be better done using a handle
to the line if that is available.

The next example illustrates the use of a cell array (see Section 18.7) to specify
the YTickLabel data and the YDir property to reverse the order of the y-axis values.
The script file in Listing 17.1 produces Figure 17.8, which shows the most frequently
used words of four letters or more, and their frequencies of occurrence, in a draft of
this book.

The script cheb3plot in Listing 17.2 plots seven Chebyshev polynomials in three
dimensions, producing Figure 17.9 (this plot reproduces part of one in [46, Fig.
A-1]). The script uses the cheby function from Listing 7.4. Note the use of the
DataAspectRatio Axes property to set the aspect ratios of the axes, and the adjust-
ment of the x- and y-axis labels, which by default are placed rather noncentrally.

Two different axes can be superimposed, using the left y-axis for one set of data
and the right y-axis for another. The script garden in Listing 17.3 uses the yyaxis

function to set up and select between two axes, and produces Figure 17.10. The
comments in the code explain how it works.

The final example illustrates how diagrams, as opposed to plots of data or func-
tions, can be generated. The script sqrt ex in Listing 17.4 produces Figure 17.11. It
uses the line function, which is a low-level routine that creates a line object in the
current Axes. Several of the higher-level graphics routines make use of line. Some-
what oxymoronically, the script also uses the rectangle function to draw a circle.
The Position property of rectangle is a vector [x y w h] that specifies a rectangle of
width w and height h with bottom left corner at the point x, y, all in Axes data units.
The Curvature property determines the curvature of the sides of the rectangle, with
extremes [0 0] for square sides and [1 1] for an ellipse. The HorizontalAlignment

and VerticalAlignment text properties have been used to help position the text.

17.4 Examples 283

0 2 4 6 8 10 12 14 16

x

5

6

7

8

9

10

11

12
10

-8

1 2 4 8 16

x

5

6

7

8

9

10

11

12
10

-8

Figure 17.7. Plot with default (upper) and modified (lower) settings.

284 Advanced Graphics

Listing 17.1. Script wfreq.

%WFREQ

% Cell array z stores the data:

z = {492, 'matrix'

475, 'that'

456, 'function'

420, 'with'

280, 'this'

273, 'figure'

261, 'example'

226, 'which'

201, 'functions'

169, 'plot'

158, 'using'

154, 'file'

150, 'command'

140, 'from'

135, 'vector'};

% Draw bar graph of first column of z. cat converts to column vector.

h = barh(cat(1,z{:,1}));

n = length(z);

h.FaceColor = [.5 .25 .5]; % RGB values giving a purple.

set(gca,'YTickLabel',z(:,2))

set(gca,'YDir','reverse') % Reverse order of y-values.

ylim([0 n+1])

grid

0 50 100 150 200 250 300 350 400 450 500

matrix

that

function

with

this

figure

example

which

functions

plot

using

file

command

from

vector

Figure 17.8. Word frequency bar chart created by script wfreq.

17.4 Examples 285

Listing 17.2. Script cheb3plot.

%CHEB3PLOT

y = linspace(-1,1,1500)';

Z = cheby(y,61);

k = [0 2 4 10 20 40 60];

z = Z(:,k+1);

for j = 1:length(k)

plot3(j*ones(size(y)),y,z(:,j),'LineWidth',1.5);

hold on

end

hold off

box on

set(gca,'DataAspectRatio',[1 0.75 4]) % Change shape of box.

view(-72,28)

set(gca,'XTickLabel',k)

set(gca,'YDir','reverse') % Needed because our x-axis is MATLAB y-axis.

set(gca,'BoxStyle','full') % Put box around all sides.

% Labels, with adjustment of position.

hx = xlabel('k'); hx.Position = hx.Position + [1.5 0.1 0];

hy = ylabel('x'); hy.Position = hy.Position + [0 -0.25 -0.25];

set(gca,'FontSize',12)

60

40

k

20

10

4

2
-1

0

1

-1

x

-0.5
0

0.5 0
1

Figure 17.9. Selected Chebyshev polynomials Tk(x) on [−1, 1], created by script
cheb3plot.

286 Advanced Graphics

Listing 17.3. Script garden.

%GARDEN

months = {'June','July','August','September','October'}; % Rows.

vegetables = {'Lettuce','Green Beans','Potatoes',...

'Swiss Chard','Pumpkins'}; % Columns.

Y = [0.4 0.3 0.0 0.0 0.0

0.6 0.4 0.0 0.0 0.0

0.7 0.8 0.3 0.2 0.0

0.6 0.5 0.9 0.4 1.1

0.4 0.4 0.7 0.6 1.6];

t = [19.5 21 24 21 18]; % Temperature.

% Make sure y-axes are black; by default they use axes color order.

fig = figure;

set(fig,'defaultAxesColorOrder',[0 0 0; 0 0 0]);

yyaxis left

b = bar(Y,'stacked');

ylabel('Yield (kg)'), ylim([0 4])

% RGB values

b(1).FaceColor = [0.5 1.0 0.25]; % Light green (tuned for printing).

b(2).FaceColor = [0 0.6 0]; % Mid green.

b(3).FaceColor = [0.9 0.9 0]; % Mid yellow.

b(4).FaceColor = [0.75 0 0]; % Mid red.

b(5).FaceColor = [1 0.5 0]; % Orange.

set(gca,'XTickLabel',months)

% Create a second axis at same location as first and plot to it.

yyaxis right

p = plot(t,'Marker','square','MarkerSize',10,'LineStyle','-',...

'LineWidth',2,'MarkerFaceColor',[.6 .6 .6]);

ylabel('Degrees (Celsius)')

t = title('Fran''s vegetable garden','FontSize',14);

% Raise title slightly to avoid clash with marker.

t.Position = t.Position + [0 0.05 0];

% Make second y-axis tick marks line up with those of first.

h2 = gca;

ylimits = h2.YLim;

yinc = (ylimits(2)-ylimits(1))/4;

h2.YTick = [ylimits(1):yinc:ylimits(2)];

% Give legend the Axes handles and place top left.

legend([b,p],vegetables{:},'Temperature','Location','NW')

17.4 Examples 287

18

19.5

21

22.5

24

D
e
g
re

e
s
 (

C
e
ls

iu
s
)

Fran's vegetable garden

June July August September October
0

0.5

1

1.5

2

2.5

3

3.5

4

Y
ie

ld
 (

k
g
)

Lettuce

Green Beans

Potatoes

Swiss Chard

Pumpkins

Temperature

Figure 17.10. Example with superimposed axes created by script garden.

Figure 17.11. Diagram created by sqrt ex.

288 Advanced Graphics

Listing 17.4. Script sqrt ex.

%SQRT_EX

% Script plotting a point on the unit circle and its two square roots,

% with the right half-plane shaded.

z = -1 + 1i; z = z/abs(z); % Point z on unit circle.

s = sqrt(z);

% Create Axes with specified range.

a = 1.75;

h = axes('XLim',[-a a],'YLim',[-a a]);

fill([0 a a 0],[-a -a a a],[.8 .8 .8]) % Shade right half-plane.

hold on

options1 = {'MarkerSize',8,'MarkerFaceColor','black'};

options2 = {'Color','k','LineWidth',1};

plot(z,'s',options1{:})

line([0 real(z)],[0 imag(z)],options2{:})

plot(s,'d',options1{:})

line([0 real(s)],[0 imag(s)],options2{:})

plot(-s,'d',options1{:})

line([0 -real(s)],[0 -imag(s)],'LineStyle',':',options2{:})

% Unit circle.

rectangle('Position',[-1,-1,2,2],'Curvature',[1,1],'LineStyle','--',...

'LineWidth',0.75)

axis square tight

% Draw x- and y-axes through origin.

plot([-a a], [0 0], '-k'), plot([0 0], [-a a], '-k')

set(h,'XTick',[],'YTick',[])

options = {'Interpreter','latex'};

xlabel('$\mathrm{Re} \lambda$',options{:})

ylabel('$\mathrm{Im} \lambda$','Rotation',0,'HorizontalAlignment',...

'right', options{:})

text(real(z)-0.1,imag(z)+0.2,'λ','HorizontalAlignment','center',...

options{:})

text(-0.1,0.05,'0','HorizontalAlignment','right','VerticalAlignment','top')

text(real(s),imag(s)+0.2,'$\lambda^{1/2}$',options{:})

text(-real(s),-imag(s)-0.25,'$-\lambda^{1/2}$', ...

'HorizontalAlignment','right',options{:})

hold off

% Reset FontSize for all text.

g = findall(gca,'type','text'); set(g,'Fontsize',14)

17.4 Examples 289

Words with most meanings in the Oxford English Dictionary:

1. set
.
.
.

6. get

— RUSSELL ASH, The Top 10 of Everything (1994)

Handle Graphics . . .

allows you to display your data and then

“reach in” and manipulate any part of the image you’ve created,

whether that means changing a color, a line style, or a font.

— The MATLAB EXPO: An Introduction to MATLAB,

SIMULINK and the MATLAB Application Toolboxes (1993)

The best designs . . .

are intriguing and curiosity-provoking,

drawing the viewer into the wonder of the data,

sometimes by narrative power,

sometimes by immense detail,

and sometimes by elegant presentation of simple but interesting data.

— EDWARD R. TUFTE, The Visual Display of Quantitative Information (1983)

Did we really want to clutter the text with

endless formatting and Handle Graphics commands such as

fontsize, markersize, subplot, and pbaspect,

which have nothing to do with the mathematics?

In the end I decided that yes, we did.

I want you to be able to download these programs

and get beautiful results immediately.

— LLOYD N. TREFETHEN, Spectral Methods in MATLAB (2000)

Chapter 18

Other Data Types and Multidimensional

Arrays

So far we have used several MATLAB data types (or classes): double, single, int*,
uint*, logical, and function handle. In this chapter we describe ten further data
types: char, string, categorical, datetime, duration, calendarDuration, table,
timetable, struct, and cell. Several MATLAB data types are, in general, multi-
dimensional arrays; we describe multidimensional arrays in the second section. Fig-
ure 18.1 shows a picture of what the MATLAB documentation describes as the “fun-
damental data types”.

If you want to determine the data type of an object you can use the class function,
which provides essentially the same information as the last column of the output from
whos. For example,

>> class(pi)

ans =

double

>> class(@sin)

ans =

function_handle

>> class(true)

ans =

logical

You can also use the isa function to test whether a variable is of a particular class:

>> isa(rand(2),'double')

ans =

logical

1

>> isa(eye(2),'logical')

ans =

logical

0

As well as being any of the classes mentioned above, the second argument of isa can
be

• float, representing double and single;

291

292 Other Data Types and Multidimensional Arrays

logical char numeric table cell struct function
handle

Array
(full or sparse)

Scalar

int8, uint8
int16, uint16
int32, uint32
int64, uint64

single double

Figure 18.1. Hierarchy of fundamental MATLAB data types.

• integer, representing signed or unsigned integer types int8, uint8, int16,
uint16, int32, uint32, int64, and uint64;

• numeric, representing all the types included under float and integer.

Functions isfloat, isinteger, and isnumeric can also be used to test for these
three respective groups of types.

18.1. Character Vectors and Arrays

A character vector (char vector) is a vector of characters represented internally in
MATLAB by numbers from 0 to 65,535. Consider the following example:

>> s = 'ABCabc'

ABCabc

>> sd = double(s)

sd =

65 66 67 97 98 99

>> s2 = char(sd)

ABCabc

>> whos

Name Size Bytes Class Attributes

s 1×6 12 char

s2 1×6 12 char

sd 1×6 48 double

We see that a char vector can be specified by placing characters between single quotes
or by applying the char function to a vector of positive integers. Each character in a

18.1 Character Vectors and Arrays 293

char vector occupies 2 bytes. Values up to 127 correspond to ASCII characters, the
rest being Unicode characters. For example, here we produce the letter “x” and the
Unicode multiplication symbol:

>> [char(120) char(215)]

ans =

x×

Strings
MATLAB has always had strings: sequences of characters delineated by
single quotes and stored as vectors of integers. The notion of string is em-
bedded in the language though the names of functions such as str2double
and num2str. Recently, the language has expanded to provide more flexi-
ble handling of strings, so that nowadays there is a string class, discussed
in the next section, and the traditional MATLAB string is now called a
character vector.

Character vectors are indexed just like any other array:

>> s(6:-1:4)

cba

Character vectors can also be created by formatting the values of numeric vari-
ables, using int2str, num2str, or sprintf, as described in Section 13.2.

MATLAB has several functions for working with character vectors. Function
strcat concatenates two character vectors into one longer vector. It removes trailing
spaces but leaves leading spaces:

>> strcat('Hello',' world')

Hello world

A similar effect can be achieved using the square bracket notation:

>> ['Hello ' 'world']

Hello world

Both approaches provide a convenient way to generate character vectors whose con-
struction does not fit on a single line of code. For example,

fprintf(['This collection of test problems '...

'was released on %s and contains %d problems.\n'],...

v.date, v.problemcount)

Two character vectors can be compared using strcmp: strcmp(s,t) returns 1
(true) if s and t are identical and 0 (false) otherwise. Function strcmpi does likewise
but treats uppercase and lowercase letters as equivalent. Note the difference between
using strcmp and the relational operator ==:

>> strcmp('Matlab8','Matlab9')

ans =

logical

0

294 Other Data Types and Multidimensional Arrays

>> 'Matlab8' == 'Matlab9'

ans =

1×7 logical array

1 1 1 1 1 1 0

The relational operator can be used only to compare character vectors of equal length
and it returns a logical vector showing which characters match. To test whether one
vector is contained in another use strfind. strfind(s,t) returns a vector of starting
indices of locations where character vector t appears in s:

>> strfind('abcd','bc')

ans =

2

>> strfind('abacad','a')

ans =

1 3 5

Note that strfind is recommended to be used in preference to an older function
findstr, but the syntaxes are subtly different because findstr(s,t) looks for the
occurrences of the shorter of s and t in the longer of the two.

A character vector can be tested for with logical function ischar.
Function eval executes a character vector containing any MATLAB expression.

Suppose we want to set up matrices A1, A2, A3, A4, the pth of which is A - p*eye(n).
Instead of writing four assignment statements this can be done in a loop using eval:

for p = 1:4

eval(['A', int2str(p), ' = A - p*eye(n)'])

end

When p = 2, for example, the argument to eval is the string 'A2 = A - p*eye(n)' and
eval executes the assignment.

Character vectors of the same length can be combined into character arrays. If
the vectors to be combined are not of the same length they can be padded with spaces
as necessary, and the padding can be done automatically with the char function:

>> subjects = ['Chemistry';'Physics']

Dimensions of matrices being concatenated are not consistent.

>> subjects = ['Chemistry';'Physics ']

subjects =

Chemistry

Physics

>> subjects = char('Chemistry','Physics')

subjects =

Chemistry

Physics

For more functions relating to character arrays see help strfun.

18.2 String Arrays 295

The Char Maze
The char function provides access to a wondrous variety of over 65,000
Unicode characters. This one-line script exploits two of them:

while 1, fprintf('%s\n',char(rand(1,80)+9585.5)); pause(.2), end

Try it! This is our MATLAB version of a classic 1980s code for the Com-
modore 64 (see [79], [130]).

18.2. String Arrays

A member of the MATLAB string class is an array for which each entry contains a
character vector. Here, we set up a 1-by-1 string array:

>> s = string('This is a string')

s =

string

"This is a string"

>> whos s

Name Size Bytes Class Attributes

s 1×1 166 string

String arrays can be formed in several ways, in particular using the string function,
which can take arguments in various forms and convert them to strings. Building on
the example at the end of the previous section, we can write

>> subjects = string({'Mathematics';'Computer Science';...

'Chemistry'; 'Physics'})

subjects =

4×1 string array

"Mathematics"

"Computer Science"

"Chemistry"

"Physics"

>> [isstring(subjects) ischar(subjects)]

ans =

1×2 logical array

1 0

Unlike character vectors, strings can be compared with the relational operator ==:

>> subjects(1) == subjects(2)

ans =

logical

0

296 Other Data Types and Multidimensional Arrays

They can also be joined with the + operator:

>> subjects(1) + ' ' + subjects(3)

ans =

string

"Mathematics Chemistry"

Many functions are available for working with strings, including some of those
mentioned in the previous section:

>> contains(subjects,'Science')

ans =

4×1 logical array

0

1

0

0

>> split(subjects(2)) % Split string at whitespace characters.

ans =

2×1 string array

"Computer"

"Science"

>> join(ans) % Join strings together, with space between.

ans =

string

"Computer Science"

>> reverse(subjects)' % Reverse character order in each element.

ans =

1×4 string array

"scitamehtaM" "ecneicS retupmoC" "yrtsimehC" "scisyhP"

>> subjects = replace(subjects,'Computer','Computational')

subjects =

4×1 string array

"Mathematics"

"Computational Science"

"Chemistry"

"Physics"

>> s = sort(subjects); s(3)

ans =

Mathematics

18.3 Multidimensional Arrays 297

These examples give just a brief indication of the power of string arrays for han-
dling and analyzing textual data. At the time of writing strings are new to MATLAB
and as time goes on we expect them to become more fully developed and integrated.

18.3. Multidimensional Arrays

Full (but not sparse) arrays of type double, single, int*, uint*, char, logical,
cell, and struct can have more than two dimensions. Multidimensional arrays are
defined and manipulated using natural generalizations of the techniques for matrices.
For example, we can set up a 3-by-2-by-2 array of random normal numbers as follows:

>> rng(1), A = randn(3,2,2)

A(:,:,1) =

-0.6490 -1.1096

1.1812 -0.8456

-0.7585 -0.5727

A(:,:,2) =

-0.5587 0.5864

0.1784 -0.8519

-0.1969 0.8003

>> whos

Name Size Bytes Class Attributes

A 3×2×2 96 double

Notice that MATLAB displays this three-dimensional array a two-dimensional slice
at a time. Functions rand, randn, zeros, and ones all accept an argument list of
the form (n 1,n 2,...,n p) or ([n 1,n 2,...,n p]) in order to set up an array
of dimension n 1-by-n 2-· · · -by-n p. An existing two-dimensional array can have its
dimensionality extended by assigning to elements in a higher dimension; MATLAB
automatically increases the dimensions:

>> B = [1 2 3; 4 5 6];

>> B(:,:,2) = ones(2,3)

B(:,:,1) =

1 2 3

4 5 6

B(:,:,2) =

1 1 1

1 1 1

The number of dimensions can be queried using ndims, and the size function returns
the number of elements in each dimension:

>> ndims(B)

ans =

3

>> size(B)

ans =

2 3 2

298 Other Data Types and Multidimensional Arrays

Table 18.1. Multidimensional array functions.

cat Concatenate arrays
ndims Number of dimensions
ndgrid Generate arrays for multidimensional functions and

interpolation
permute Permute array dimensions
ipermute Inverse permute array dimensions
shiftdim Shift dimensions
circshift Circularly shift elements
squeeze Remove singleton dimensions

To build a multidimensional array by listing elements in one statement use the cat

function, whose first argument specifies the dimension along which to concatenate the
arrays comprising its remaining arguments:

>> C = cat(3,[1 2 3; 0 -1 -2],[-5 -3 -1; 10 5 0])

C(:,:,1) =

1 2 3

0 -1 -2

C(:,:,2) =

-5 -3 -1

10 5 0

Functions that operate in an elementwise sense can be applied to multidimen-
sional arrays, as can arithmetic, logical, and relational operators. Thus, for example,
B-ones(size(B)), B.*B, exp(B), 2.^B, and B > 0 all return the expected results. The
data analysis functions in Table 5.7 all operate along the first nonsingleton dimension
by default and accept an extra argument dim that specifies the dimension over which
they are to operate. For B as above, compare

>> sum(B)

ans(:,:,1) =

5 7 9

ans(:,:,2) =

2 2 2

>> sum(B,3)

ans =

2 3 4

5 6 7

The transpose operator and the linear algebra operations such as diag, inv, eig,
and \ are undefined for arrays of dimension greater than 2; they can be applied to
two-dimensional sections only.

Table 18.1 lists some functions designed specifically for manipulating multidimen-
sional arrays.

18.4 Categorical Arrays 299

18.4. Categorical Arrays

Categorical arrays contain elements drawn from a finite set of categories. They are
particularly useful when the number of elements is much greater than the number of
categories, and in this case they can save on storage, as each category name is stored
only once.

When the categories can be represented by character vectors, categorical arrays
allow comparisons to be done with the logical operator eq (==) instead of strcmp.
Moreover, the categories can be defined as mathematically ordered, enabling relational
operations on their elements.

Suppose we know ten optimal points for some function and wish to record the
nature of each point. Here, we form a cell array and then, since there are only three
possible types, 'max', 'min', and 'saddle', we convert it to a categorical array:

>> opt_type = {'max','min','max','saddle','min','saddle','max','max'};

>> opt_type = categorical(opt_type)

opt_type =

max min max saddle min saddle max

max

Alternatively, we could rename the categories on (or, as here, after) creation:

>> opt_type = categorical(opt_type,{'max','min','saddle'},...

{'maximum','minimum','saddle point'})

opt_type =

Columns 1 through 5

maximum minimum maximum saddle point minimum

Columns 6 through 8

saddle point maximum maximum

>> categories(opt_type)

ans =

3×1 cell array

'maximum'

'minimum'

'saddle point'

>> summary(opt_type)

maximum minimum saddle point

4 2 2

The summary function prints a summary of the array.
Categorical arrays can be created from numbers as well as strings. Suppose the

array

>> X = [5 1 4 5; 3 1 4 2; 1 4 2 3; 5 1 2 3];

represents five crops, identified by number, planted at certain locations in a field
broken into a 4× 4 grid. We might record the actual crop names as follows:

>> X = categorical(X,1:5,{'barley','wheat','corn','maize','rapeseed'})

X =

rapeseed barley maize rapeseed

300 Other Data Types and Multidimensional Arrays

corn barley maize wheat

barley maize wheat corn

rapeseed barley wheat corn

Now we check where wheat is being grown:

>> X == 'wheat'

ans =

4×4 logical array

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 0

The next example forms an ordinal categorical array. The first category is the
smallest and the last one the largest:

>> periods = {'Georgian','Regency','Victorian','Edwardian'};

>> Y = categorical([1 3 4 3 1 2 4 1 4 3 4],1:4,periods,'Ordinal',true)

Y =

Columns 1 through 4

Georgian Victorian Edwardian Victorian

Columns 5 through 9

Georgian Regency Edwardian Georgian Edwardian

Columns 10 through 11

Victorian Edwardian

Now we can compute with Y:

>> min(Y)

ans =

Georgian

>> summary(Y)

Georgian Regency Victorian Edwardian

3 1 3 4

>> find(Y < 'Edwardian')

ans =

1 2 4 5 6 8 10

Notice that the function min, which we used with a numeric argument in Chapter 5,
is being called here with a categorical array as argument. MATLAB calls a version
of the function designed to work with categorical arrays, through a process known as
overloading (see Chapter 19). The histogram function has also been overloaded to
work with categorical arrays. Figure 18.2 shows the output from histogram(Y).

Categorical arrays are often used within tables, as illustrated in the next section.
For more details on categorical arrays see doc categorical arrays.

18.5. Datetime and Duration Arrays

Dates and times can be stored in datetime arrays, which support computation, sorting,
comparison, plotting, and formatted display. These arrays are particularly useful in

18.5 Datetime and Duration Arrays 301

Figure 18.2. Histogram of categorical array.

tables, and play a key role in timetables (see Section 18.6). A datetime array can
be set up with the datetime function code or by importing from a file using the
readtable or textscan functions.

The datetime function sets up datetime arrays:

>> t = datetime('2017-09-30')

t =

datetime

30-Sep-2017

>> whos t

Name Size Bytes Class Attributes

t 1×1 17 datetime

>> details(t)

datetime with properties:

SystemTimeZone: 'Europe/London'

Methods, Superclasses

The details function prints properties of an array, and is particularly useful for
objects, where it provides a hyperlink to the methods that can be applied to the
object.

The input to datetime can be in one of several formats. If the format is not
recognized you need to specify it, and the output format can also be specified:

>> datetime('30 Sep 2017','InputFormat','dd MMM yyyy')

302 Other Data Types and Multidimensional Arrays

Table 18.2. Subset of identifiers supported in the datetime 'Format' and
'InputFormat' specifiers.

Identifier Description Example
y Year (with no leading zeros) 2017
yy Year, using last two digits 17
M Month, one or two digits 9
MM Month, two digits 09
MMM Month, abbreviated name Sep
MMMM Month, full name September
d, dd Day of month, one or two digits, two digits 3, 03
e, ee Day of the week∗, one or two digits, two digits 7, 07
eee Day of the week, abbreviated name Sat
eeee Day of the week, full name Saturday
h, hh Hour in 12-hour clock, one or two digits, two digits 8, 08
H, HH Hour in 24-hour clock, one or two digits, two digits 20, 20
m, s Minute, second, one or two digits 32, 9

∗ Sunday is the first day of the week.

ans =

datetime

30-Sep-2017

>> datetime(ans,'Format','eeee d MMMM, y')

ans =

datetime

Saturday 30 September, 2017

Format specifiers are used to specify both input and output formats and can draw on
a large number of identifiers, a small subset of which is shown in Table 18.2. For the
full list see doc datetime properties.

Datetime arrays can also be set up by giving numerical values for the year, month,
day, hour, minute, and second components, and multiple dates and times can be
specified in one call, as in the next examples:

>> t = datetime(2017,9,30,8,25,0)

t =

datetime

30-Sep-2017 08:25:00

>> t = datetime(2017,1:7,1,0,0,0)

t =

1×7 datetime array

Columns 1 through 3

01-Jan-2017 00:00:00 01-Feb-2017 00:00:00 01-Mar-2017 00:00:00

Columns 4 through 6

01-Apr-2017 00:00:00 01-May-2017 00:00:00 01-Jun-2017 00:00:00

Column 7

18.5 Datetime and Duration Arrays 303

01-Jul-2017 00:00:00

>> d = t(7)-t(1) % Time between first and last datetimes.

d =

4344:00:00

>> d.Format = 'm'

d =

duration

2.6064e+05 min

>> whos d t

Name Size Bytes Class Attributes

d 1×1 10 duration

t 1×7 113 datetime

The difference of two datetime values is a duration array, and such arrays can
also be created with the duration function. Many functions are overloaded for date-
time and duration arrays. The caldiff function is one of several functions that
produces or works with calendarDuration arrays, which can also be created with the
calendarDuration function:

>> d1 = diff(t) % Number of hours in each month

d1 =

1×6 duration array

Columns 1 through 5

744:00:00 672:00:00 744:00:00 720:00:00 744:00:00

Column 6

720:00:00

>> d2 = caldiff(t,'days') % Number of days in each month.

1×6 calendarDuration array

d2 =

31d 28d 31d 30d 31d 30d

>> whos d1 d2

Name Size Bytes Class Attributes

d1 1×6 64 duration

d2 1×6 598 calendarDuration

>> 2*d2

ans =

1×6 calendarDuration array

62d 56d 62d 60d 62d 60d

The next example shows the use of interp1 to interpolate with a datetime array.
It also uses the caldays function to produce a calendarDuration vector representing
successive calendar days:

dates = datetime({'10 Jan 17','14 Feb 17','20 Mar 17','9 Apr 17'},...

304 Other Data Types and Multidimensional Arrays

Jan Feb Mar Apr

2017

75

80

85

90

95

100

Figure 18.3. Plot of interpolated data with datetime vector on the x-axis.

'InputFormat','d MMM yy')

prices = [87 80 95 96];

daily = dates(1) + caldays(0:days(dates(end)-dates(1)));

prices_daily = interp1(dates,prices,daily,'spline');

plot(dates,prices,'.',daily,prices_daily,'-',...

'MarkerSize',30,'LineWidth',2)

ax = xlim; ax(1) = datetime('1-Jan-2017'); xlim(ax)

The plot produced is shown in Figure 18.3.
MATLAB supports many other features for datetime arrays, including setting

different time zones, converting dates to Julian date format, and displaying time zone
offsets, and it has a NaT (Not-a-Time) value to represent an unknown or missing
datetime value. The function ismissing detects missing values, including NaTs for
datetime data and NaNs for double and single data.

18.6. Tables and Timetables

A table is a MATLAB data type designed to store tabular data, with columns repre-
senting variables of possibly different types. There are many ways to set up a table.
One way is as follows. This example contains data about an annual conference held
in different cities:

cities = {'Chicago';'London';'Atlanta';'Paris';'New_York';'Berlin'};

year = (2010:2015)';

month = {'July';'July';'August';'June';'May';'August'};

attendance = [2100; 2750; 1988; 2721; 2401; 2234];

reg_fee = [550; 575; 560; 600; 650; 610];

A = table(year,month,attendance,reg_fee,'RowNames',cities)

18.6 Tables and Timetables 305

Running this code produces the output

A =

year month attendance reg_fee

____ ________ __________ _______

Chicago 2010 'July' 2100 550

London 2011 'July' 2750 575

Atlanta 2012 'August' 1988 560

Paris 2013 'June' 2721 600

New_York 2014 'May' 2401 650

Berlin 2015 'August' 2234 610

Here, the columns are labeled by the variables from which they were constructed and
the row labels were specified as character vectors. Notice that columns 1, 3, and 4
are numeric but the second column contains character vectors. The summary function
prints a statistical summary of the table:

>> summary(A)

Variables:

year: 6×1 double

Values:

min 2010

median 2012.5

max 2015

month: 6×1 cell string

attendance: 6×1 double

Values:

min 1988

median 2317.5

max 2750

reg_fee: 6×1 double

Values:

min 550

median 587.5

max 650

We can remove a column by assigning the empty matrix to it:

>> A.reg_fee = []

A =

year month attendance

____ ________ __________

Chicago 2010 'July' 2100

London 2011 'July' 2750

Atlanta 2012 'August' 1988

Paris 2013 'June' 2721

New_York 2014 'May' 2401

Berlin 2015 'August' 2234

Now we add a new column that specifies the number of presentations given at the
conferences:

306 Other Data Types and Multidimensional Arrays

>> A.presentations = [1550; 1810; 1434; 2124; 2033; 1999]

A =

year month attendance presentations

____ ________ __________ _____________

Chicago 2010 'July' 2100 1550

London 2011 'July' 2750 1810

Atlanta 2012 'August' 1988 1434

Paris 2013 'June' 2721 2124

New_York 2014 'May' 2401 2033

Berlin 2015 'August' 2234 1999

Then we sort the table by the number of attendees and calculate the average number
of attendees and presentations:

>> sortrows(A,3,'descend')

ans =

year month attendance presentations

____ ________ __________ _____________

London 2011 'July' 2750 1810

Paris 2013 'June' 2721 2124

New_York 2014 'May' 2401 2033

Berlin 2015 'August' 2234 1999

Chicago 2010 'July' 2100 1550

Atlanta 2012 'August' 1988 1434

>> format shortg

>> [mean(A.attendance), mean(A.presentations)]

ans =

2365.7 1825

Next we convert the second column of the table to an ordinal categorical array:

>> A.month = categorical(A.month,{'January','February','March',...

'April','May','June','July','August','September',...

'October','November','December'},'Ordinal',true)

A =

year month attendance presentations

____ ______ __________ _____________

Chicago 2010 July 2100 1550

London 2011 July 2750 1810

Atlanta 2012 August 1988 1434

Paris 2013 June 2721 2124

New_York 2014 May 2401 2033

Berlin 2015 August 2234 1999

Note that the entries in the month column no longer have quotes around them,
as they are not now character vectors. We could simply have written A.month =

categorical(A.month), which would have made a set of categories comprising just
the months in the table. But the argument pair 'Ordinal',true, which specifies
that the categories are ordered, would then order alphabetically instead of by month.
Now we can extract the conferences that took place in the second half of the year:

18.6 Tables and Timetables 307

>> A(A.month >= 'July',:)

ans =

year month attendance presentations

____ ______ __________ _____________

Chicago 2010 July 2100 1550

London 2011 July 2750 1810

Atlanta 2012 August 1988 1434

Berlin 2015 August 2234 1999

Now we give an example that reads in a table from a file using readtable. We
take a file of photographic data in which each row contains Exif data for an image.
The file was exported from an imaging application and inspection of it showed that
it has 39 columns, most of which we are not interested in. We therefore provide a
format specifier that skips over the unwanted fields. Here, %q denotes a text field and
%*q tells MATLAB to skip over a text field. Since there is a date field that is not in
a format that MATLAB recognizes, we have to specify its format:

E = readtable('exif.txt','Delimiter','|','Format',...

['%q %*q %*q %*q %*q %*q %{yyyy:MM:dd HH:mm:ss}D %*q %*q %f'...

repmat('%*q',[1,10]) '%f' repmat('%*q',[1,19])]);

>> E(1:6,:)

ans =

Filename DateTime Aperture ISO

______________ ___________________ ________ ____

'DSCF3911.RAF' 2016:04:07 09:11:39 5 2500

'IMG_4063.JPG' 2016:04:11 15:07:40 2.2 25

'IMG_4096.JPG' 2016:04:20 08:59:44 2.2 25

'IMG_7019.CR2' 2016:04:28 07:14:34 6.3 800

'DSCF3913.RAF' 2016:04:07 09:11:57 5 3200

'DSCF3916.RAF' 2016:04:07 13:07:14 4 1250

Now we can analyze and plot the data in various ways. For example:

>> [min(E.ISO) max(E.ISO) mean(E.ISO)]

ans =

25 3200 991.67

If the date and time that the photos were taken play a key role then we might want
to convert the table to a timetable. A timetable is a table for which each row has an
associated date and time, stored in the first column:

>> E = table2timetable(E);

>> E(1:6,:)

ans =

DateTime Filename Aperture ISO

___________________ ______________ ________ ____

2016:04:07 09:11:39 'DSCF3911.RAF' 5 2500

2016:04:11 15:07:40 'IMG_4063.JPG' 2.2 25

2016:04:20 08:59:44 'IMG_4096.JPG' 2.2 25

2016:04:28 07:14:34 'IMG_7019.CR2' 6.3 800

308 Other Data Types and Multidimensional Arrays

2016:04:07 09:11:57 'DSCF3913.RAF' 5 3200

2016:04:07 13:07:14 'DSCF3916.RAF' 4 1250

The field DateTime (which could have had any name) now represents labels for the
rows, and the first column is now Filename:

>> E(1,1)

ans =

DateTime Filename

___________________ ______________

2016:04:07 09:11:39 'DSCF3911.RAF'

The timerange function produces a subscript that can be used to select rows corre-
sponding to a particular time interval:

>> E(timerange('18-Apr-2016','21-Apr-2016'),:) % April 18-20

ans =

DateTime Filename Aperture ISO

___________________ ______________ ________ ___

2016:04:20 08:59:44 'IMG_4096.JPG' 2.2 25

2016:04:18 19:11:56 'IMG_4083.JPG' 2.2 125

By default the interval is open on the left and closed on the right, but a third argument
allows the interval to be made open or closed at either end.

MATLAB has various other functions for working with timetables, which include
synchronize for combining two tables and merging rows with a common time, and
retime, which adjusts the table to a new set of times, with various options for how
this is done.

MATLAB has a rich variety of functions for working with tables beyond those we
have illustrated, including

• writetable, for writing tables to files in various formats, including CSV (“comma-
separated value”) and xls (Excel spreadsheet) files;

• functions to convert to and from other MATLAB data types (for example,
array2table, table2array); and

• functions to apply functions to variables (columns) and rows (varfun, rowfun).

For more details on tables see doc table.

18.7. Structures and Cell Arrays

Structures and cell arrays both provide a way to collect arrays of different types and
sizes into a single array. They are used in many places within MATLAB. For example,
structures are used by many of the numerical methods routines in Chapters 11 and 12
and in the graphics system, as described in the previous chapter. Structures also play
an important role in object-oriented programming in MATLAB, which is described
in the next chapter. Cell arrays are used by the varargin and varargout functions
(Section 10.5), to specify text in graphics commands (p. 128), and in the switch-case
construct (Section 6.2).

Suppose we want to build a collection of 4 × 4 test matrices, recording for each
matrix its name, the matrix elements, and the eigenvalues. We can build an array
structure testmat having three fields, name, mat, and eig:

18.7 Structures and Cell Arrays 309

n = 4;

testmat(1).name = 'Hilbert';

testmat(1).mat = hilb(n);

testmat(1).eig = eig(hilb(n));

testmat(2).name = 'Pascal';

testmat(2).mat = pascal(n);

testmat(2).eig = eig(pascal(n));

Displaying the structure gives the field names but not the contents:

>> testmat

testmat =

1×2 struct array with fields:

name

mat

eig

We can access individual fields using a period:

>> testmat(2).name

ans =

Pascal

>> testmat(1).mat

ans =

1.0000 0.5000 0.3333 0.2500

0.5000 0.3333 0.2500 0.2000

0.3333 0.2500 0.2000 0.1667

0.2500 0.2000 0.1667 0.1429

>> testmat(2).eig

ans =

0.0380

0.4538

2.2034

26.3047

For array fields, array subscripts can be appended to the field specifier:

>> testmat(1).mat(1:2,1:2)

ans =

1.0000 0.5000

0.5000 0.3333

Another way to set up the testmat structure is using the struct command:

testmat = struct('name',{'Hilbert','Pascal'},...

'mat',{hilb(n),pascal(n)}, ...

'eig',{eig(hilb(n)),eig(pascal(n))})

The arguments to the struct function are the field names, with each field name
followed by the field contents listed within curly braces (that is, the field contents are
cell arrays, which are described next). If the entire structure cannot be assigned with

310 Other Data Types and Multidimensional Arrays

one struct statement then it can be created with fields initialized to a particular value
using repmat. For example, we can set up a test matrix structure for five matrices
initialized with empty names and zero matrix entries and eigenvalues with

>> testmat = repmat(struct('name',{''}, 'mat',{zeros(n)}, ...

'eig',{zeros(n,1)}),5,1)

testmat =

5×1 struct array with fields:

name

mat

eig

>> testmat(5) % Check last element of structure.

ans =

struct with fields:

name: ''

mat: [4×4 double]

eig: [4×1 double]

For the benefits of such preallocation see Section 23.4.
When a structure passed as an argument to a function is used to set up options

it is necessary for the routine to check which fields have been set. This can be done
by using the isfield function to test for the existence of the fields, as here:

>> isfield(testmat(1),'eig')

ans =

logical

1

>> isfield(testmat(1),'inverse')

ans =

logical

0

Cell arrays differ from structures in that they are accessed using array indexing
rather than named fields. One way to set up a cell array is by using curly braces as
cell array constructors. In this example we set up a 2-by-2 cell array:

>> C = {1:3, pi; magic(2), 'A string'}

C =

2×2 cell array

[1×3 double] [3.1416]

[2×2 double] 'A string'

Cell array contents are indexed using curly braces, and the colon notation can be used
in the same way as for other arrays:

>> C{1,1}

ans =

1 2 3

>> C{2,:}

18.7 Structures and Cell Arrays 311

ans =

1 3

4 2

ans =

A string

The test matrix example can be recast as a cell array as follows:

clear testmat

testmat{1,1} = 'Hilbert';

testmat{2,1} = hilb(n);

testmat{3,1} = eig(hilb(n));

testmat{1,2} = 'Pascal';

testmat{2,2} = pascal(n);

testmat{3,2} = eig(pascal(n));

The clear statement is necessary to remove the previous structure of the same name.
Here, each collection of test matrix information occupies a column of the cell array,
as can be seen from

>> testmat

testmat =

3×2 cell array

'Hilbert' 'Pascal'

[4×4 double] [4×4 double]

[4×1 double] [4×1 double]

The celldisp function can be used to display the contents of a cell array:

>> celldisp(testmat)

testmat{1,1} =

Hilbert

testmat{2,1} =

1.0000 0.5000 0.3333 0.2500

0.5000 0.3333 0.2500 0.2000

0.3333 0.2500 0.2000 0.1667

0.2500 0.2000 0.1667 0.1429

testmat{3,1} =

0.0001

0.0067

0.1691

1.5002

testmat{1,2} =

Pascal

testmat{2,2} =

1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

testmat{3,2} =

0.0380

0.4538

312 Other Data Types and Multidimensional Arrays

2.2034

26.3047

Another way to express the assignments to testmat above is by using standard
array subscripting, as illustrated by

testmat(1,1) = {'Hilbert'};

Curly braces must appear on either the left or the right side of the assignment state-
ment in order for the assignment to be valid.

When a component of a cell array is itself an array, its elements can be accessed
using parentheses:

>> testmat{2,1}(4,4)

ans =

0.1429

Although it was not necessary in our example, we could have preallocated the
testmat cell array with the cell command:

testmat = cell(3,2);

After this assignment testmat is a 3-by-2 cell array of empty matrices.
Useful for visualizing the structure of a cell array is cellplot. Figure 18.4 was

produced by cellplot(testmat).
Cell arrays can replace comma-separated lists of variables. The varargin and

varargout functions (see Section 10.5) provide good examples of this usage. To
illustrate, consider

>> testmat{1,:}

ans =

Hilbert

ans =

Pascal

Two separate outputs are produced, and by feeding these into char we obtain a
character array:

>> names = char(testmat{1,:})

names =

Hilbert

Pascal

>> whos names

Name Size Bytes Class

names 2×7 28 char array

Grand total is 14 elements using 28 bytes

The functions cell2struct and struct2cell convert between cell arrays and
structures, while num2cell creates a cell array of the same size as the given numeric
array. The cat function, discussed in Section 18.3, provides an elegant way to produce
a numeric vector from a structure or cell array. In our test matrix example, if we want
to produce a matrix having as its columns the vectors of eigenvalues, we can type

18.7 Structures and Cell Arrays 313

Hilbert Pascal

Figure 18.4. cellplot(testmat).

cat(2,testmat.eig)

for the structure testmat, or

cat(2,testmat{3,:})

for the cell array testmat, in both cases obtaining the result

ans =

0.0001 0.0380

0.0067 0.4538

0.1691 2.2034

1.5002 26.3047

Here, the first argument of cat causes concatenation in the second dimension, that
is, columnwise. If this argument is replaced by 1 then the concatenation is row-wise
and a long vector is produced. An example of this use of cat is in Listing 17.1, where
it extracts from a cell array a vector that can then be plotted.

314 Other Data Types and Multidimensional Arrays

For many applications,

the choice of the proper data structure is really

the only major decision involved in the implementation;

once the choice has been made,

only very simple algorithms are needed.

— ROBERT SEDGEWICK, Algorithms (1988)

Chapter 19

Object-Oriented Programming

Most of the code in this book fits into the paradigm of procedural programming, which
is based on procedures (functions in MATLAB) that contain a sequence of compu-
tational steps. Another paradigm is functional programming, in which programs are
entirely expressed in terms of mathematical functions. Function application is the
only control structure and functions have no “side-effects”, that is, they do not do
anything except return a value. Lisp is a classic example of a language designed for
functional programming.

A third programming paradigm is object-oriented programming, which we have
already seen is fundamental to the graphics system and which features in the next two
chapters on the Symbolic Math Toolbox and graphs. Object-oriented programming
is also widely used in developing GUIs. Among third-party software, Chebfun [38] is
an excellent example of the power of object-oriented programming in MATLAB.

Object-oriented programming exploits the idea of data abstraction, in which the
programmer defines classes and keeps separate the representation of the classes from
implementation of operations on them. These operations are called methods. In
general, a hierarchy of classes is built. Objects are specific instances of the classes
with their own characteristics.

Object-oriented programming is a rich subject and we can only give a very brief
introduction here, which we do via two examples. In each example we define a new
class along with operations on objects in the class and we exploit overloading, in which
MATLAB calls different versions of a function based on the class of its argument.

19.1. Max-Plus Algebra Class

Consider the algebra that is obtained using the two operations ⊕ and ⊗, defined for
a and b on the real line including −∞ by

a⊕ b = max(a, b),

a⊗ b = a+ b.

In other words we replace plus by max and times by plus. From a⊕−∞ = max(a,−∞) =
a it follows that −∞ is the additive zero, and a ⊗ 0 = a shows that 0 is the multi-
plicative identity.

Motivation for looking at this max-plus algebra comes from the observation that
if two activities must be performed consecutively then the time required to complete
both is the sum of the individual times, but if they may be performed concurrently
then the time required is the maximum of the individual times. This suggests, cor-
rectly, that max-plus algebra is useful in scheduling [15], [63].

315

316 Object-Oriented Programming

Our aim is to define a new MATLAB class (or data type) maxplus that enables us
to carry out max-plus arithmetic. To do so we need to create a single file maxplus.m

on the MATLAB path that contains all the necessary code in it. Alternatively, we
could create a subdirectory @maxplus of a directory on the path and put within it
multiple files that define the class.

The code file in Listing 19.1 is a bare-bones file that sets up max-plus arithmetic
for scalars. The code comprises a classdef block within which there is a methods

block that defines an object in the maxplus class and the operations that can be
performed on it. The maxplus class is defined as a subclass (denoted by <) of the
built-in double class. By making maxplus a sublass of double, we can take advantage
of mathematical operators that already exist for double, though some of these will
need redefining. The obj function defines an object of the maxplus class and the
obj@double(a) syntax is MATLAB notation for calling the superclass double on
a; this means that maxplus('a'), for example, is allowed, and returns a maxplus

variable with value 97—the result of double converting the char to its ASCII value.
The methods block contains functions that define methods for the class, namely

addition, multiplication, and powering. The function names plus, times, and mpower

are the standard MATLAB names that are invoked when MATLAB encounters the
symbols +, *, and ^. We are therefore overloading these functions for maxplus argu-
ments. We can now write

>> a = maxplus(1)

a =

maxplus:

double data:

1

>> class(a)

ans =

maxplus

We can carry out some simple max-plus computations:

>> a = maxplus(1); b = maxplus(-2); c = maxplus(4);

>> a*b + c + maxplus(2)

ans =

maxplus:

double data:

4

>> a^5

ans =

maxplus:

double data:

5

If we write the first of the previous expressions in a different way, the same answer is
produced:

>> a*b + c + 2

ans =

maxplus:

19.1 Max-Plus Algebra Class 317

Listing 19.1. Code file maxplus; version for scalars.

classdef maxplus < double

methods

function obj = maxplus(a)

% Maxplus class constructor.

if ~isreal(a), error('Max-plus scalars must be real.'), end

obj = obj@double(a);

end

function z = plus(x,y)

z = maxplus(max(x,y));

end

function z = mtimes(x,y)

z = maxplus(double(x) + double(y));

end

function z = mpower(x,k)

% k a nonnegative integer.

if (round(k) ~= k) || k < 0

error('Only nonnegative integer powers are supported.')

end

if k == 0

z = maxplus(0); return

end

z = x;

for i = 2:k

z = z*x;

end

end

end

end

318 Object-Oriented Programming

double data:

4

Since the final 2 is a double, we might have expected MATLAB to carry out the
second addition as a standard addition of doubles. However, MATLAB has a rule
that user-defined classes have precedence over MATLAB fundamental classes, and
this rule ensures that the second addition is carried out as a max-plus addition.

Our maxplus class works for scalars, but it will be much more useful if it is
extended to matrices, so that we can carry out what is technically linear algebra
over the tropical semiring. The maxplus and plus functions need no change, the
latter automatically working componentwise when supplied with matrix arguments.
However, mtimes does need modifying as we need it to carry out matrix multiplication,
which is defined for m-by-n A and n-by-p B by

(A⊗B)ij =
∑⊕

k

aik ⊗ bkj = max
k

(aik + bkj).

Listing 19.2 shows an extended maxplus class in which mtimes handles the matrix
case by explicitly computing the matrix product. For efficiency we vectorized the
inner loop; the unvectorized code is shown in comments. We also overloaded the
disp function in order to produce more concise output:

>> a = maxplus([1 2 3])

a =

1 2 3

And we added the times method, which is called for componentwise multiplication
of arrays. Note that 2*maxplus(rand(2)) gives an error, as we have not catered for
the special case where one of the arguments is a scalar and the other a matrix.

This class also has a new feature: static methods, which are methods that do not
require an object of the class as input. We have included matrix generation functions
eye and ones, which generate the appropriate matrices for the max-plus algebra,
namely matrices 0 and I such that A ⊕ 0 = A and A ⊗ I = A. These are called by
specifying the class as an argument:

>> eye(2,4,'maxplus')

ans =

0 -Inf -Inf -Inf

-Inf 0 -Inf -Inf

>> zeros(2,'maxplus')

ans =

-Inf -Inf

-Inf -Inf

Note that we have taken care that eye and ones accept arguments in the same way
as the built-in functions.

19.1 Max-Plus Algebra Class 319

Listing 19.2. Code file maxplus; version for matrices.

classdef maxplus < double

methods

function obj = maxplus(a)

% Maxplus class constructor.

if ~isreal(a), error('Max-plus matrices must be real.'), end

obj = obj@double(a);

end

function z = plus(x,y)

z = maxplus(max(x,y));

end

function z = times(x,y)

z = maxplus(double(x) + double(y));

end

function z = mtimes(x,y)

[m,n] = size(x);

[n1,p] = size(y);

if n ~= n1, error('Matrix dimensions not compatible.'), end

if max([m n p]) == 1

z = maxplus(double(x) + double(y)); % Scalar operands.

else

% Matrix multiplication.

z = zeros(m,p,'maxplus'); % 'maxplus' argument essential here!

for i = 1:m

for j = 1:p

z(i,j) = maxplus(max(double(x(i,:).') + double(y(:,j))));

% Less efficient, but equivalent to previous line:

% for k = 1:n

% z(i,j) = z(i,j) + x(i,k)*y(k,j);

% end

end

end

end

end

function z = mpower(x,k)

% k a nonnegative integer.

if (round(k) ~= k) || k < 0

error('Only nonnegative integer powers are supported.')

end

if k == 0

z = eye(size(x),'maxplus'); return

end

z = x;

for i = 2:k

z = z*x;

end

320 Object-Oriented Programming

end

function disp(a)

% Called by display function to display an object.

disp(double(a))

end

end

methods (Static)

% Methods that do not require an object of the class as input.

% Support all three possible syntaxes of input to eye and zeros.

function A = eye(m,n)

% Identity matrix in the max-plus algebra.

if nargin == 1

if length(m) == 1

n = m;

else

n = m(2); m = m(1);

end

end

A = repmat(-inf,[m,n]);

A(1:m+1:m*min(m,n)) = 0; % Set diagonal to zero.

A = maxplus(A);

end

function A = zeros(m,n)

% Zero matrix in the max-plus algebra.

if nargin == 1

if length(m) == 1

n = m;

else

n = m(2); m = m(1);

end

end

A = maxplus(repmat(-inf,[m,n]));

end

end

end

19.2 Circulant Matrix Class 321

We can obtain a summary of all the methods available for our class as follows:

>> methods('maxplus')

Methods for class maxplus:

abs ctranspose int64 permute

accumarray cummax int8 plot

acos cummin inv plus

acosd cumprod isbanded pochhammer

...

csch int32 ordschur

Static methods:

eye zeros

Here, most of the output has been omitted because there are so many methods in-
herited from double (many of which do not make sense in the max-plus algebra).

To illustrate the use of the maxplus class we consider the linear system x = A⊗x⊕b
for an n-by-n A. In the usual algebra, the solution to the system x = Ax + b is
x = (I−A)−1b = (I+A+A2+ · · ·)b when ρ(A) < 1, where the spectral radius ρ(A) is
the largest modulus of any eigenvalue of the matrix A. Somewhat analogously, under
certain conditions that we will not describe, the max-plus system has the solution
x = (I ⊕A⊕ · · · ⊕An−1)⊗ b, where the sum now terminates at the (n− 1)st power.
We will check this formula for a system with n = 3 for which the required conditions
are known to hold:

>> A = maxplus([-1 0 0; -1 0 -3; -2 -4 0]);

>> b = maxplus([1 0 -1]');

>> K = eye(size(A),'maxplus') + A + A^2; % Kleene star.

>> x = K*b

x =

1

0

-1

>> res = norm(x - (A*x+b))

res =

0

19.2. Circulant Matrix Class

A circulant matrix is a special kind of Toeplitz matrix of the form

C = C(c) =

c1 cn . . . c2

c2 c1 . . .
...

...
. . .

. . . cn
cn . . . c2 c1

 .

322 Object-Oriented Programming

Note that the diagonals “wrap around”. Circulant matrices have a number of in-
teresting properties. The sum and product of two circulant matrices is a circulant
matrix and the inverse of a circulant matrix is a circulant matrix. Moreover, circulant
matrices commute.

These properties all follow from the remarkable fact that a circulant matrix is
diagonalized by the discrete Fourier transform matrix Fn [53, Thm. 4.8.2]:

F−1n CFn = D = diag(di). (19.1)

The matrix Fn, introduced in Section 11.4, is a complex matrix satisfying FnF
∗
n =

nI; it can be generated in MATLAB by either of the expressions fft(eye(n)) or
sqrt(n)*gallery('orthog',n,3)'. The vector d is given by d = F ∗nc = nF−1n c.

Multiplication by Fn is efficiently carried out by the FFT: y = F−1n x is equivalent
to y = ifft(x), and similarly x = Fny is equivalent to x = fft(y).

Using these properties we can carry out multiplication and inversion of circulant
matrices, and solution of circulant linear systems, more efficiently than for general
matrices. A good way to arrange these computations is with a circulant class that
overloads addition, matrix multiplication, matrix inversion, and backslash. The class
circulant in Figure 19.3 stores the defining vector c (the first column of the circulant
matrix) and the vector of eigenvalues of the matrix, the latter to avoid recomputation
of the eigenvalues.

The circulant class exploits the fact that the first column of F−1n is given by
F−1n e1 = n−1e, where e is the vector of ones, so that, given D in (19.1), we can recover
the first column of C from the equation Ce1 = FnDF

−1
n e1 = n−1FnDe = n−1Fnd.

This is a bare-bones class that would need extending for serious use. Nevertheless,
for working with circulant matrices it can be very beneficial. In the following example
we solve a circulant system Cx = b using the regular backslash and then with our
circulant class. Note that gallery(’circul’,c) produces a circulant matrix whose
first row is c, hence we transpose the matrix:

n = 10000; rng(1)

c = randn(n,1);

Cmat = gallery('circul',c)'; % n-by-n matrix representation.

C = circulant(c); % circulant class representation.

normC = norm(C.eig,inf); % Equivalent to norm(C).

b = randn(n,1);

tic, x1 = Cmat\b; toc % Regular backslash.

rel_residual = norm(Cmat*x1 - b)/(normC*norm(x1) + norm(b))

tic, x2 = C\b; toc % Overloaded backslash.

rel_residual = norm(Cmat*x2 - b)/(normC*norm(x2) + norm(b))

The output is

Elapsed time is 9.775281 seconds.

rel_residual =

1.6632e-13

Elapsed time is 0.001755 seconds.

rel_residual =

6.9252e-16

19.2 Circulant Matrix Class 323

Listing 19.3. Code file circulant.

classdef circulant

properties

vector % Vector of coefficients in first row of matrix.

eig % Vector of eigenvalues.

end

methods

function obj = circulant(c,e)

obj.vector = c;

if nargin < 2, e = length(c)*ifft(c); end

obj.eig = e;

end

function x = plus(a,b)

x = circulant(a.vector + b.vector,a.eig + b.eig);

end

function x = mldivide(a,b)

for j = size(b,2):-1:1 % Reverse order preallocates x.

x(:,j) = fft(a.eig .\ ifft(b(:,j)));

end

end

function x = mtimes(a,b)

n = length(a.vector);

if n ~= length(b.vector)

error('The matrices do not conform for multiplication');

end

e = a.eig.*b.eig; v = fft(e)/n;

x = circulant(v,e);

end

function x = inv(a)

if min(abs(a.eig)) <= eps*max(abs(a.eig))

warning('Matrix is singular to working precision.')

end

n = length(a.vector);

e = 1./a.eig; v = fft(e)/n;

x = circulant(v,e);

end

function disp(a)

disp(a.vector')

end

end

end

324 Object-Oriented Programming

Not only has exploiting circulant structure reduced the solution time by three orders
of magnitude (thanks to the efficiency of the FFT) but it has produced a smaller
residual.

19.3. On Things Not Treated

This chapter has merely scratched the surface of object-oriented programming in
MATLAB, presenting very simple, numerically oriented examples. We have barely
touched on inheritance, public versus private properties, handle classes, or events and
listeners. The best example of object-oriented programming in MATLAB is MATLAB
itself, through its graphics system, unit testing framework, Symbolic Math Toolbox,
and so on.

For further reading we recommend the MATLAB documentation and the following
resources.

• An article by Davis on an “object-oriented backslash” for linear systems, based
on a class called factorization [28].

• An article by Neidinger on an object-oriented implementation of automatic dif-
ferentiation in MATLAB [134].

• The Chebfun system (http://www.chebfun.org) [38] for numerical computa-
tion with functions, which is built on piecewise polynomial interpolation at the
extrema of Chebyshev polynomials.

Objects allow anyone to add new data types to MATLAB.

By writing a handful of M-files,

you can have your MATLAB do operations

we never dreamed of at The MathWorks.

— CLEVE B. MOLER, Objectively Speaking. OOPS is Not an Apology (1999)

http://www.chebfun.org

Chapter 20

The Symbolic Math Toolbox

The Symbolic Math Toolbox is one of the many toolboxes that extend the function-
ality of MATLAB, and perhaps the one that does so in the most fundamental way.
The toolbox is provided with the MATLAB and Simulink Student Suite but must be
purchased as an extra with other versions of MATLAB. You can tell if your MATLAB
installation contains the toolbox by issuing the ver command and seeing if the toolbox
is listed.

The toolbox is based upon the MuPAD engine, which performs all the symbolic
and variable-precision computations.

Not all functions in the toolbox can be mentioned here. To see a full list, type
doc symbolic then select “Functions and Other Reference”.

All input and output in this chapter is shown as it appears in the Command
Window. You may prefer to carry out symbolic computations in the Live Editor (see
Section 16.7), since output is automatically typeset, making it easier to read.

20.1. Creating Symbolic Variables and Expressions

The Symbolic Math Toolbox defines a new data type: a symbolic object, denoted by
sym. Symbolic objects can be created with the sym and syms commands. We can
define symbolic variables x and y with

>> syms x y % Or, equivalently, x = sym('x'), y = sym('y')

>> whos

Name Size Bytes Class Attributes

x 1×1 112 sym

y 1×1 112 sym

Once the symbolic variables are defined, computations can be done with them:

>> expand((x+y)^4)

ans =

x^4 + 4*x^3*y + 6*x^2*y^2 + 4*x*y^3 + y^4

>> factor(ans)

ans =

[x + y, x + y, x + y, x + y]

Care is needed when converting numeric expressions to symbolic form. It is impor-
tant to ensure that expressions are not first converted to double precision. Consider
this attempt to form a symbolic representation of e = exp(1):

325

326 The Symbolic Math Toolbox

>> e = sym(exp(1))

e =

3060513257434037/1125899906842624

Here, exp(1) has been evaluated in double precision and then sym has expressed
that number in rational form, as the ratio of two large integers. The variable e only
contains an approximation to e. The correct way to store a symbolic representation
of e is as follows:

>> e = exp(sym(1))

e =

exp(1)

By applying exp to the symbolic constant 1 we ensure that all computations are
symbolic.

The sym function has a feature that is both useful and potentially dangerous,
namely that it tries to convert floating-point numbers to nearby symbolic expressions
involving square roots and rational numbers with modest sized coefficients:

>> sym(0.1)

ans =

1/10

>> sym(sqrt(5))

ans =

5^(1/2)

In these two examples, the double-precision arguments 0.1 and
√

5 are not exactly
representable in double-precision arithmetic. Nevertheless, sym produces symbolic
quantities as if there were no rounding errors in evaluating the arguments. The sym

function has an optional second argument that specifies how to do the conversion to
symbolic form. We highlight two of the options.

• sym(expr,’r’). The documentation states that this rational mode “converts
floating-point numbers obtained by evaluating expressions of the form p/q,
p*pi/q, sqrt(p), 2^q, and 10^q for modest sized integers p and q to the corre-
sponding symbolic form”. If a simple rational approximation cannot be found
then the procedure for the ’f’ option is followed. This is the default conversion,
and explains why exact representations of 0.1 and

√
5 were obtained above.

• sym(expr,’f’). This floating-point mode returns an exact rational representa-
tion of the floating-point number given by the expression expr.

While the rational mode is convenient, the floating-point mode may be more appro-
priate for numerical computations, as we will explain in Section 20.6.

The sym function can also set up arrays of symbolic variables:

>> v = sym('v', [1 4])

v =

[v1, v2, v3, v4]

>> A = sym('A', [2 2])

A =

20.2 Equation Solving 327

[A1_1, A1_2]

[A2_1, A2_2]

>> whos A v

Name Size Bytes Class Attributes

A 2×2 112 sym

v 1×4 112 sym

20.2. Equation Solving

Suppose we wish to solve the quadratic equation ax2 + bx + c = 0. We first define
symbolic variables:

>> syms a b c x

Now we can solve the quadratic using the powerful solve command:

>> y = solve(a*x^2+b*x+c == 0)

y =

-(b + (b^2 - 4*a*c)^(1/2))/(2*a)

-(b - (b^2 - 4*a*c)^(1/2))/(2*a)

MATLAB creates a 2-by-1 symbolic object y to hold the two solutions. Alternatively,
we could have typed

y = solve(a*x^2+b*x+c)

In this case, since we did not specify an equals sign, MATLAB assumes the expression
we provided is to be equated to zero. Less obvious is how MATLAB knows to solve for
x and not one of the other symbolic variables. MATLAB applied its symvar function
to the expression a*x^2+b*x+c to determine the variable closest alphabetically to x,
and solved for that variable. The same procedure is used by other functions in the
toolbox. In each case, this choice can be overridden by specifying the variable or
variables as extra arguments. Thus we can solve the same equation for a as follows:

>> solve(a*x^2+b*x+c,a)

ans =

-(c + b*x)/x^2

Suppose we now wish to check that the components of y really do satisfy the
quadratic equation. We evaluate the quadratic at y, using elementwise squaring since
y is a vector:

>> a*y.^2+b*y+c

ans =

c + (b + (b^2 - 4*a*c)^(1/2))^2/(4*a)

- (b*(b + (b^2 - 4*a*c)^(1/2)))/(2*a)

c + (b - (b^2 - 4*a*c)^(1/2))^2/(4*a)

- (b*(b - (b^2 - 4*a*c)^(1/2)))/(2*a)

The result is not displayed as zero, but we can apply the simplify function to try to
reduce it to zero:

328 The Symbolic Math Toolbox

>> simplify(ans)

ans =

0

0

It is characteristic of symbolic manipulation packages that postprocessing is often
required to put the results in the most useful form.

Having computed a symbolic solution, a common requirement is to evaluate it for
numerical values of the parameters. This can be done using the subs function, which
replaces all occurrences of symbolic variables by specified expressions. To find the
roots of the quadratic x2 − x− 1 (cf. p. 176) we can type

>> a = 1; b = -1; c = -1;

>> subs(y)

ans =

1/2 - 5^(1/2)/2

5^(1/2)/2 + 1/2

When given one symbolic argument the subs command returns that argument with
all variables replaced by their assigned values (if they have any) from the workspace.
Alternatively, subs can be called with three arguments in order to assign values to
variables without changing those variables in the workspace:

>> subs(y, {a, b, c}, {1, -1, -1})

ans =

1/2 - 5^(1/2)/2

5^(1/2)/2 + 1/2

Note that the second and third arguments are cell arrays (see Section 18.7). In both
cases we can convert the result to numerical form using double:

>> double(ans)

ans =

-0.6180

1.6180

Simultaneous equations can be specified one at a time to the solve function. In
general, the number of solutions cannot be predicted. There are two ways to collect
the output. As in the next example, if the same number of output arguments as
unknowns is supplied then the results are assigned to the outputs (alphabetically):

>> [xs, ys] = solve(x^2+y^2 == 1, x^3-y^3 == 1)

xs =

1

0

- (2^(1/2)*1i)/2 - 1

(2^(1/2)*1i)/2 - 1

ys =

0

-1

1 - (2^(1/2)*1i)/2

(2^(1/2)*1i)/2 + 1

20.2 Equation Solving 329

Alternatively, a single output argument can be provided, in which case a structure
(see Section 18.7) containing the solutions is returned:

>> eqns = [y == 1/(1+x^2), y == 1.001 - 0.5*x];

>> S = solve(eqns)

S =

struct with fields:

x: [3×1 sym]

y: [3×1 sym]

>> [S.x(1), S.y(1)]

ans =

[1001/500 - 2*root(z^3 - (1001*z^2)/500 + (1252001*z)/1000000 ...

The fields of the structure have the names of the variables, and in this example we
looked at the first of the three solutions and truncated the output. Solutions have
been returned in terms of the roots of a cubic polynomial. We can check that the
equations are indeed satisfied using the isAlways function, which returns true or false
for each equation it is given:

>> isAlways(subs(eqns,S))

ans =

3×2 logical array

1 1

1 1

1 1

The sym and syms commands have optional arguments real, positive, integer,
and rational for specifying assumptions on a variable. For example:

>> syms x real, syms n integer, syms p positive

>> assumptions x

ans =

in(x, 'real')

>> assumptions % For all variables.

ans =

[0 < p, in(x, 'real'), in(n, 'integer')]

Here, we used the assumptions command to confirm what assumptions have been
set. All assumptions on x can be cleared with

assume(x,'clear')

The information that a variable satisfies certain constraints can be vital in sym-
bolic computations. For example, consider

>> syms p x y

>> y = ((x^p)^(p+1))/x^(p-1);

>> simplify(y)

ans =

x*(x^p)^p

330 The Symbolic Math Toolbox

The Symbolic Math Toolbox assumes that the variables x and p are complex and
is unable to simplify y further. With the additional information that x and p are
positive, further simplification is obtained:

>> syms p x positive

>> simplify(y)

ans =

x^(p^2+1)

For another example, the identity acos(cos z) = z is not true for all complex z, but it
is true with appropriate restrictions on z. Here, we use the assume command, which
allows quite general assumptions to be specified:

>> syms z

>> simplify(acos(cos(z)))

ans =

acos(cos(z))

>> assume(z > 0 & z < 1)

>> simplify(acos(cos(z)))

ans =

z

The function complex does not accept symbolic arguments, so to set up complex
symbolic expressions you must use sym(sqrt(-1)) or sym(i). For example:

>> syms x y

>> z = x + sym(sqrt(-1))*y;

>> expand(z^2)

x^2 + x*y*2i - y^2

20.3. Calculus

The Symbolic Math Toolbox provides powerful symbolic integration and differentia-
tion capabilities.

20.3.1. Integration

Integration is carried out with the int function. Here is a simple test of int:

>> syms x

>> int(sym(1)), int(x)

ans =

x

ans =

x^2/2

Note that the constant of integration is always omitted. A more complicated example
is

20.3 Calculus 331

>> int(sqrt(tan(x)))

ans =

(2^(1/2)*(log(2^(1/2)*tan(x)^(1/2) - tan(x) - 1) - log(tan(x) +

2^(1/2)*tan(x)^(1/2) + 1)))/4 + (2^(1/2)*(atan(2^(1/2)*tan(x)^(1/2)

- 1) + atan(2^(1/2)*tan(x)^(1/2) + 1)))/2

This answer is not easy to read. One possibility is to “prettyprint” it in the Command
Window with the command pretty(ans), but this is still not very readable in this
case. Another possibility is to use latex(ans) to convert the output to LATEX and
then typeset the output, which gives (after splitting the expression over two lines)

√
2
(

log
(√

2
√

tan(x)− tan(x)− 1
)
− log

(
tan(x) +

√
2
√

tan(x) + 1
))

4

+

√
2
(

arctan
(√

2
√

tan(x)− 1
)

+ arctan
(√

2
√

tan(x) + 1
))

2
.

An easier solution is to carry out the computations within the Live Editor (see Sec-
tion 16.7). Here is how this example appears in the Live Editor (the output is cut
off at the right margin in the PDF file from which this is taken, but within the Live
Editor it can be scrolled).

syms x
int(sqrt(tan(x)))

ans =

Definite integrals
∫ b
a
f(x) dx can be evaluated by appending the limits of integra-

tion a and b. The following integral evaluates to Catalan’s constant, with is a function
in the toolbox and so can be evaluated numerically:

>> int(log(x)/(1+x^2),0,1)

ans =

-catalan

>> double(ans)

ans =

-9.1597e-01

Here is an integral that has a singularity at the left endpoint, but which nevertheless
has a finite value:

>> int(atan(x)/x^(3/2),0,1)

ans =

(pi*2^(1/2))/2 - pi/2 - 2^(1/2)*log(2 - 2^(1/2))*(1/4 - 1i/4)

+ 2^(1/2)*log(-1/(2^(1/2) - 2))*(1/4 + 1i/4)

+ (2^(1/2)*log(2^(1/2) + 2))/2

The answer is exact and is rather complicated. We can convert it to numeric form:

332 The Symbolic Math Toolbox

>> double(ans)

ans =

1.8971 - 0.0000i

The result has a tiny imaginary component (in fact of order 10−73), but obviously
the result should be real.

It is important to realize that symbolic manipulation packages cannot “do” all
integrals. This may be because the integral does not have a closed-form solution
in terms of elementary functions, or because it has a closed-form solution that the
package cannot find. Here is an example of the first kind:

>> int(sqrt(1+cos(x)^2))

ans =

2^(1/2)*ellipticE(x, 1/2)

The integral is expressed in terms of an elliptic integral of the second kind, which
itself is not expressible in terms of elementary functions. If we evaluate the same
integral in definite form we obtain

>> int(sqrt(1+cos(x)^2),0,48)

ans =

2^(1/2)*ellipticE(48, 1/2)

and MATLAB can evaluate the elliptic integral therein:

>> double(ans)

ans =

58.4705

As a final example, consider the integral [176]∫ 1

0

x4(1− x)4

1 + x2
dx, (20.1)

which is clearly positive. Evaluation of the integral produces a surprising result:

>> int(x^4*(1-x)^4/(1+x^2),0,1)

ans =

22/7-pi

Hence we have an unexpected demonstration that the well-known approximation 22/7
to π is a strict overestimate.

20.3.2. Differentiation

Symbolic differentiation is carried out using diff. This function was mentioned on
p. 68 as a means for forming differences of a numerical vector or matrix, and it
is overloaded for a symbolic argument. You can tell whether a given function is
overloaded from its help entry. Typing help diff produces (with ... denoting
omitted output)

>> help diff

diff Difference and approximate derivative.

diff(X), for a vector X, is [X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)].

20.3 Calculus 333

diff(X), for a matrix X, is the matrix of row differences,

[X(2:n,:) - X(1:n-1,:)].

...

See also gradient, sum, prod.

Reference page for diff

Other functions named diff

Clicking on the hyperlinked “Other functions named diff” reveals several other ver-
sions of diff, one of which, sym/diff, handles symbolic arguments. To obtain help
directly for the symbolic version of diff type doc sym/diff.

Here are some examples of the use of diff for symbolic arguments:

>> syms a x n

>> diff(x^2)

ans =

2*x

>> diff(x^n,2)

ans =

n*x^(n - 2)*(n - 1)

>> diff(sin(x)*exp(-a*x^2))

ans =

exp(-a*x^2)*cos(x) - 2*a*x*exp(-a*x^2)*sin(x)

>> diff(x^4*exp(x),3)

ans =

36*x^2*exp(x) + 12*x^3*exp(x) + x^4*exp(x) + 24*x*exp(x)

>> simplify(ans)

ans =

x*exp(x)*(x^3 + 12*x^2 + 36*x + 24)

In the second and fourth calls to diff a second argument specifies the order of the
required derivative; the default is the first derivative.

The syms command can also set up functions of symbolic variables. Here, we
differentiate the product and composition of functions:

>> syms f(x) g(x)

>> diff(f*g) % Product rule

ans(x) =

f(x)*diff(g(x), x) + g(x)*diff(f(x), x)

>> diff(f(g)) % Chain rule

ans =

D(f)(g(x))*diff(g(x), x)

We can obtain mixed partial derivatives of functions of more than one variable by
explicitly specifying the variable with respect to which each differentiation is done:

>> syms x y

334 The Symbolic Math Toolbox

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.5

1

1.5

2

2.5

3

3.5
×10

-3 (x
4
 (x - 1)

4
)/(x

2
 + 1)

Figure 20.1. The integrand in (20.1).

>> f = x^2*exp(-y^2)-y/x

f =

x^2*exp(-y^2) - y/x

>> f_xy = diff(diff(f,x),y)

f_xy =

1/x^2 - 4*x*y*exp(-y^2)

>> f_yx = diff(diff(f,y),x)

f_yx =

1/x^2 - 4*x*y*exp(-y^2)

Finally, Figure 20.1 plots the integrand in (20.1). The plot appears symmetric
and so the maximum might be thought to be at x = 0.5. To check, we can find the
maximum symbolically:

>> g = diff(x^4*(1-x)^4/(1+x^2)); s = double(solve(g))

s =

0.0000 + 0.0000i

1.0000 + 0.0000i

0.4758 + 0.0000i

-0.0712 - 1.1815i

-0.0712 + 1.1815i

Three real stationary points have been found and the one that is the desired maximum
is at 0.4758, not 0.5.

Other useful differentiation functions include gradient, hessian, and jacobian,
for computing the multidimensional derivatives of the same names. For an example

20.3 Calculus 335

of the use of gradient and hessian see Section 26.5.

20.3.3. Solving Differentiation Equations

Differential equations can be solved symbolically with dsolve. Initial conditions can
optionally be specified after the equations, using the syntax y(a) = b, Dy(a) = c, etc.;
if none are specified then the solutions contain arbitrary constants of integration,
denoted C1, C2, etc. For our first example we take the logistic differential equation

d

dt
y(t) = cy − by2,

solving it first with arbitrary c and b:

>> syms y(t) t b c

>> y = dsolve(diff(y) == c*y-b*y^2)

y =

0

c/b

(c*(tanh((c*(C2 + t))/2) + 1))/(2*b)

Three solutions have been returned, two of which are constant.

Now we solve the equation as an initial-value problem with particular values for b
and c and then check that the solution satisfies the initial condition and the differential
equation. Note that we need to initialize y(t) again in order to clear the previous
solution:

>> syms y(t)

>> eqn = diff(y) - (10*y-y^2);

>> ys = dsolve(eqn,y(0) == 0.01)

ys =

10/(exp(log(999) - 10*t) + 1)

>> subs(ys,t,0)

ans =

1/100

>> res = simplify(subs(eqn,y,ys))

res(t) =

0

Next we try to find the general solution to the pendulum equation, which we
solved numerically on p. 195. Here, we use a different syntax for expressing differential
equations in which the equation is given as a string, with D denoting a first derivative,
D2 denoting a second derivative, and so on:

>> y = dsolve('D2theta + sin(theta) = 0')

y =

0

2*jacobiAM((2^(1/2)*(C15 - t)*(C13 - 1)^(1/2)*1i)/2, -2/(C13 - 1))

2*jacobiAM(-(2^(1/2)*(C15 - t)*(C13 - 1)^(1/2)*1i)/2, -2/(C13 - 1))

336 The Symbolic Math Toolbox

No explicit solution in terms of elementary functions could be found, but the solution
is expressed in terms of the MuPAD Jacobi amplitude function jacobiAM(u,m). If θ
is small we can approximate sin θ by θ, and in this case dsolve is able to find both
general and particular solutions:

>> y = dsolve('D2theta + theta = 0')

y =

C16*cos(t) + C17*sin(t)

>> y = dsolve('D2theta + theta = 0','theta(0)=1','Dtheta(0)=1')

y =

cos(t) + sin(t)

Note that the numbers associated with the C constants are unpredictable. Some
constants are generated and used internally and not displayed. To force the constants
to start being numbered at 1, you can use the command reset(symengine), which
restarts the symbolic engine (but does not clear the MATLAB workspace).

When using the string notation, if the independent variable is other than the de-
fault, t, it is important to specify the variable as the last input argument—otherwise,
it will be treated as a constant:

>> y = dsolve('Dy-y*cos(x) = 0','y(0) = 1') % Incorrect if Dy=dy/dx.

y =

exp(t*cos(x))

>> y = dsolve('Dy-y*cos(x) = 0','y(0) = 1','x')

y =

exp(sin(x))

20.3.4. Taylor Expansions

Taylor series can be computed using the function taylor:

>> syms x

>> taylor(log(1+x))

ans =

x^5/5 - x^4/4 + x^3/3 - x^2/2 + x

By default the Taylor series is expanded about 0 and terms up to order 5 are produced.
Additional name–value arguments can specify different parameters. Terms up to
degree less than the value specified for 'Order' are included. Here, we use the pretty
command to make the output more readable:

>> pretty(taylor(exp(-sin(x)),'Order',3,'ExpansionPoint',1))

/ 2 \

| sin(1) cos(1) | 2

exp(-sin(1)) + exp(-sin(1)) | ------ + ------- | (x - 1)

\ 2 2 /

- cos(1) exp(-sin(1)) (x - 1)

20.4 Linear Algebra 337

-6 -4 -2 0 2 4 6

-5

0

5

Taylor Series Approximation

T
N

(x) = -x7/30

f(x) = sin(tan(x)) - tan(sin(x))

N = 7
+

-
a = 0 -2*pi < x < 2*pi

Help Reset Close

Figure 20.2. taylortool window.

A function taylortool provides a graphical interface to taylor, plotting both the
function and the Taylor series. See Figure 20.2, which shows the interesting function
sin(tanx)− tan(sinx).

The input [176]

syms x, h = fplot(sin(x)+asin(x),[-0.8,0.8]); h.LineWidth = 1;

produces the plot in Figure 20.3. The curve looks straight, yet sin and arcsin have
curvature. What is the explanation? Consider the following three Taylor series up to
terms x5:

>> taylor(sin(x)), taylor(asin(x)), taylor(sin(x)+asin(x))

ans =

x^5/120 - x^3/6 + x

ans =

(3*x^5)/40 + x^3/6 + x

ans =

x^5/12 + 2*x

The x3 terms in the Taylor series for sin and arcsin cancel. Hence sinx + arcsinx
agrees with 2x up to terms of order x5, and x5 is small on [−0.8, 0.8].

20.4. Linear Algebra

Several of the MATLAB linear algebra functions have counterparts in the Symbolic
Math Toolbox that take symbolic arguments. To illustrate we take the numeric and
symbolic representations of the 5-by-5 Frank matrix:

338 The Symbolic Math Toolbox

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 20.3. sinx+ arcsinx.

>> A_num = gallery('frank',5); A_sym = sym(A_num);

Since the Frank matrix has small integer entries the conversion is done exactly.
We can invert the double array A num in the usual way:

inv(A_num)

ans =

1.0000 -1.0000 -0.0000 0.0000 0

-4.0000 5.0000 -1.0000 -0.0000 0

12.0000 -15.0000 4.0000 -1.0000 0

-24.0000 30.0000 -8.0000 3.0000 -1.0000

24.0000 -30.0000 8.0000 -3.0000 2.0000

The trailing zeros show that the computed elements are not exactly integers. We can
obtain the exact inverse by applying inv to A sym, thereby invoking the Symbolic
Math Toolbox’s overloaded inv function:

inv(A_sym)

ans =

[1, -1, 0, 0, 0]

[-4, 5, -1, 0, 0]

[12, -15, 4, -1, 0]

[-24, 30, -8, 3, -1]

[24, -30, 8, -3, 2]

Just as for numeric matrices, the backslash operator can be used to solve linear
systems with a symbolic coefficient matrix. For example, we can compute the (5,1)
element of the inverse of the Frank matrix with

>> [0 0 0 0 1]*(A_sym\[1 0 0 0 0]')

ans =

24

20.5 Polynomials and Rationals 339

For a symbolic argument the eig function tries to compute the exact eigensystem.
We know from Galois theory that this is not always possible in a finite number of
operations for matrices of order 5 or more. For the 5-by-5 Frank matrix eig succeeds:

>> e = eig(A_sym)

e =

1

7/2 - (55 - 14*10^(1/2))^(1/2)/2 - 10^(1/2)/2

(55 - 14*10^(1/2))^(1/2)/2 - 10^(1/2)/2 + 7/2

10^(1/2)/2 - (14*10^(1/2) + 55)^(1/2)/2 + 7/2

10^(1/2)/2 + (14*10^(1/2) + 55)^(1/2)/2 + 7/2

>> double(e)

ans =

1.0000

0.2812

3.5566

0.0994

10.0629

As we noted in the example in Section 9.8.1, the eigenvalues come in reciprocal pairs.
To check we can type

>> [e(2)*e(3); e(4)*e(5)]

ans =

-((55 - 14*10^(1/2))^(1/2)/2 - 10^(1/2)/2 + 7/2)*(10^(1/2)/2 + ...

(10^(1/2)/2 - (14*10^(1/2) + 55)^(1/2)/2 + 7/2)*(10^(1/2)/2 + ...

>> simplify(ans)

ans =

1

1

Note that we had to truncate the original output.
Finally, while we computed the characteristic polynomial numerically in Sec-

tion 9.8.1, we can now obtain it exactly:

charpoly(A_sym,sym('x')) % Second argument for polynomial output.

ans =

x^5 - 15*x^4 + 55*x^3 - 55*x^2 + 15*x - 1

A partial list of linear algebra functions in the toolbox is given in Table 20.1; most
of these overload corresponding functions defined for numeric arguments.

20.5. Polynomials and Rationals

Symbolic polynomial and rational expressions are easily formed using symbolic vari-
ables and the usual MATLAB notation. The function coeffs returns the (symbolic)
coefficients and corresponding terms of a polynomial. The functions sym2poly and
poly2sym convert between a symbolic polynomial and a numeric vector of coefficients
of the polynomial. In all three functions the ordering of the coefficients and terms is in
the standard MATLAB way from “highest power down to lowest power”. Examples:

340 The Symbolic Math Toolbox

Table 20.1. Linear algebra functions in the Symbolic Math Toolbox.

diag Diagonal matrices and diagonals of matrix
tril Extract lower triangular part
triu Extract upper triangular part
inv Matrix inverse
det Determinant
rank Rank
rref Reduced row echelon form
null Basis for null space (not orthonormal)
orth Orthogonalization
rank Rank
chol Cholesky factorization
lu LU factorization
qr QR factorization
eig Eigenvalues and eigenvectors
svd Singular values and singular vectors
poly Characteristic polynomial
expm Matrix exponential
logm Matrix logarithm
funm General matrix function
sqrtm Matrix square root
colspace∗ Basis for column space
jordan∗ Jordan canonical (normal) form
smithForm∗ Smith normal form

∗ Functions defined for symbolic arguments but not for doubles.

20.5 Polynomials and Rationals 341

>> syms x

>> p = (2/3)*x^3-x^2-3*x+1

p =

(2*x^3)/3 - x^2 - 3*x + 1

>> [c,terms] = coeffs(p,x)

c =

[2/3, -1, -3, 1]

terms =

[x^3, x^2, x, 1]

>> a = sym2poly(p)

a =

0.6667 -1.0000 -3.0000 1.0000

>> q = poly2sym(a)

q =

(2*x^3)/3 - x^2 - 3*x + 1

As the coefficient of x3 in this example illustrates, poly2sym (which calls sym) at-
tempts to convert floating-point numbers to nearby rationals. There is no function to
return the degree of a polynomial, but it can be computed as length(sym2poly(p))
- 1.

Division of one polynomial by another is done by quorem, which returns the quo-
tient and remainder (cf. deconv on p. 176):

>> [q,r] = quorem(p,x^2)

q =

(2*x)/3 - 1

r =

1 - 3*x

The function numden converts a rational into a normal form where the numerator
and denominator are polynomials with integer coefficients and then returns the nu-
merator and denominator. For a numeric argument, but not necessarily for symbolic
ones, the returned numerator and denominator will be relatively prime:

>> [n,d] = numden(sym(16)/sym(84))

n =

4

d =

21

>> r = 1 + x^2/(3+x^2/5);

>> [p,q] = numden(r)

p =

6*x^2 + 15

q =

x^2 + 15

The sort function is overloaded for symbolic arguments. It sorts a polynomial in
decreasing order of the powers:

342 The Symbolic Math Toolbox

Table 20.2. Special polynomials.

bernstein Bernstein polynomials
chebyshevT Chebyshev polynomials of the first kind
chebyshevU Chebyshev polynomials of the second kind
gegenbauerC Gegenbauer (ultraspherical) polynomials
hermiteH Hermite polynomials
jacobiP Jacobi polynomials
laguerreL Generalized Laguerre function and Laguerre polynomials
legendreP Legendre polynomials

>> p = x^2-3-3*x^3+x/2;

>> p = sort(p)

p =

- 3*x^3 + x^2 + x/2 - 3

Several special polynomials, mainly orthogonal polynomials, are provided: see
Table 20.2. Figure 20.4 shows the output from the following code:

syms x, a = 1; b = 1;

hold on, grid on

for n = 1:5

fplot(jacobiP(n,a,b,x),[-1 1],'LineWidth',1.5)

end

title(['Jacobi polynomials with a = ' num2str(a) ...

' and b = ' num2str(b)])

h = legend('1','2','3','4','5','Location','best');

legend('boxoff'), title(h,'Degree'), hold off

The partfrac function computes the partial fraction form of a rational function,
optionally factoring the denominator in complex arithmetic:

>> partfrac((x^3+1)/(x^2+4))

ans =

x - (4*x - 1)/(x^2 + 4)

>> pretty(partfrac((x^3+1)/(x^2+4),'FactorMode','Complex'))

- 2.0 - 0.25i - 2.0 + 0.25i

x + ------------- + -------------

x - 2.0i x + 2.0i

Finally, suppose we wish to evaluate a symbolic polynomial at a matrix argument.
Take, for example, the polynomial p(x) = x2 + x − 1 and the matrix diag(1,2,3).
Here are two different attempts:

>> syms x; p = x^2 + x - 1;

>> A = sym(diag([1,2,3]));

>> P1 = polyvalm(sym2poly(p),A)

P1 =

[1, 0, 0]

20.6 Variable-Precision Arithmetic 343

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-6

-4

-2

0

2

4

6
Jacobi polynomials with a = 1 and b = 1

1

2

3

4

5

Degree

Figure 20.4. Jacobi polynomials.

[0, 5, 0]

[0, 0, 11]

>> P2 = subs(p,x,A)

P2 =

[1, -1, -1]

[-1, 5, -1]

[-1, -1, 11]

The first result, P1, is the desired evaluation p(A) = A2 +A− I in the matrix sense.
The second evaluation gives a different answer because the subs function expands
scalars into matrices: it converts the 1 into a matrix of 1s, whereas the first evaluation
converts 1 into an identity matrix.

20.6. Variable-Precision Arithmetic

In addition to symbolic arithmetic, the Symbolic Math Toolbox supports variable-
precision floating-point arithmetic. This is useful for problems where an accurate
solution is required and an exact solution is impossible or too time-consuming to
obtain. It can also be used to experiment with the effect of varying the precision of
a computation.

The function digits returns the number of significant decimal digits to which
variable-precision computations are carried out:

>> digits

Digits = 32

344 The Symbolic Math Toolbox

The default of 32 digits can be changed to n by the command digits(n). Variable-
precision computations are based on the vpa command. The simplest usage is to
evaluate constants to variable accuracy:

>> pi_1 = vpa(pi)

pi_1 =

3.1415926535897932384626433832795

It is important to note the distinction between pi 1, a 32-digit approximation to π,
and the exact representation

>> pi_2 = sym(pi)

pi_2 =

pi

The difference is apparent from

>> sin(pi_1)

ans =

-3.2101083013100396069547145883568e-40

>> sin(pi_2)

ans =

0

Note, however that both pi 1 and pi 2 are syms:

>> whos pi*

Name Size Bytes Class Attributes

pi_1 1×1 112 sym

pi_2 1×1 112 sym

The vpa function takes a second argument that overrides the current number of
digits specified by digits:

>> vpa(pi,50)

ans =

3.1415926535897932384626433832795028841971693993751

In the next example we compute e to 40 digits and then check that taking the log-
arithm gives back 1 (to within 40 digits). By writing sym(1) we ensure that the
exponential is evaluated symbolically before being converted to vpa form:

>> digits(40)

>> x = vpa(exp(sym(1)))

x =

2.718281828459045235360287471352662497757

>> vpa(log(x)) - 1

ans =

0.0

A minor modification of this example illustrates some pitfalls:

20.6 Variable-Precision Arithmetic 345

% Incorrect code.

>> digits(40)

>> y = vpa(exp(1))

y =

2.718281828459045534884808148490265011787

>> vpa(log(y))

ans =

1.000000000000000110188913283849495821818

We omitted to convert the 1 to a sym, so MATLAB evaluated exp(1) in double-
precision floating-point arithmetic, converted that 16-digit result to 40 digits—thereby
adding 24 meaningless digits—and then evaluated the exponential.

The function vpasolve is a counterpart to the numeric fzero and symbolic solve
functions. Consider the following function based on that in Figure 20.2, which has
many zeros near −π/2:

>> syms x, f = sin(tan(x)) - tan(sin(x)) - pi/2;

>> solve(f)

Warning: Cannot solve symbolically. Returning a numeric

proximation instead.

> In solve (line 303)

ans =

-234.88796307659113165754267656334

The sym function cannot find a symbolic solution and returns one numeric root;
vpasolve produces the same root:

vpasolve(f)

ans =

-234.88796307659113165754267656334

However, vpasolve allows us to specify a starting value for the iterative method
employed or an interval on which to search, and it can also choose a random starting
value:

>> vpasolve(f, x, -pi/2)

ans =

-1.5707963267948966192313216916398

>> vpasolve(f, -pi/2 + [-0.1,0.1])

ans =

-1.4912337833414379465677549335376

>> vpasolve(f, -pi/2 + [-0.1,0.1],'random',true)

ans =

-1.6500551377834450931692298548548

>> vpasolve(f, -pi/2 + [-0.1,0.1],'random',true)

ans =

-1.5508990160785597633147812079701

The search interval can also be a rectangle in the complex plane:

346 The Symbolic Math Toolbox

>> vpasolve(f,2*[-1-i, 1+i],'random',true)

ans =

1.3891902153285393920800245007443 +

1.3046293160200280622294932555953i

Variable-precision linear algebra computations are performed by calling functions
with variable-precision arguments. For example, we can compute the eigensystem of
pascal(4) to 32 digits by

>> digits(32)

>> [V,E] = eig(vpa(pascal(4))); diag(E)

ans =

26.304703267097871286055226455526

2.2034461676473233016100756770366

0.45383455002566546509718436703794

0.038016015229139947237513500399509

The vpa function makes use of sym with the default rational mode conversion op-
tion. This can lead to unwanted conversion errors if a floating-point number happens
to be close to being rational. A case in point is when one uses vpa arithmetic to
compute the “exact” solution to a floating-point problem. Suppose we want to know
the error in the eigenvalues computed by eig in the following example:

>> A = gallery('chebspec',4,1)

A =

-0.7071 -1.4142 0.7071 -0.2929

1.4142 -0.0000 -1.4142 0.5000

-0.7071 1.4142 0.7071 -1.7071

1.1716 -2.0000 6.8284 -5.5000

>> e = eig(A) % Solution computed in double-precision arithmetic.

e =

-0.9588 + 2.3308i

-0.9588 - 2.3308i

-1.7912 + 0.7551i

-1.7912 - 0.7551i

We will compute the eigenvalues in 50-digit precision, convert the result back to
double precision (hence obtaining the rounded version of the exact answer), and then
compute the error. To do so, we need first to convert A to 50-digit vpa form. Simply
evaluating vpa(A) will not give the desired result, however, as can see by looking at
the (1,1) elements:

>> vpa(A(1,1))

ans =

-0.70710678118654752440084436210484903928483593768847

>> vpa(sym(A(1,1),'r')) % Same result as the previous vpa call.

ans =

-0.70710678118654752440084436210484903928483593768847

>> sym(A(1,1),'r')

20.7 Other Features 347

ans =

-2^(1/2)/2

>> vpa(sym(A(1,1),'f')) % Force exact conversion.

ans =

-0.70710678118654768375961339188506826758384704589844

We can see that vpa(A(1,1)) is converting A(1,1) to a nearby expression involving a
square root and then approximating that to 50 digits, instead of exactly representing
the floating-point value in 50-digit precision. We therefore need to use sym with the
floating-point mode conversion option:

>> ex = eig(vpa(sym(A,'f'))); % Solution in 50-digit arithmetic.

>> format short e

>> err = e-double(ex)

err =

-1.8874e-15 + 1.3323e-15i

-1.8874e-15 - 1.3323e-15i

1.9984e-15 - 9.9920e-16i

1.9984e-15 + 9.9920e-16i

The output shows that the solution computed in double precision is accurate in es-
sentially all of its 16 digits.

20.7. Other Features

The Symbolic Math Toolbox contains many other functions in areas we have not
touched on, including the following.

• Fourier and Laplace transforms.

• The Dirac delta function and the Heaviside step function.

• The gamma function and related functions.

• The Riemann zeta function and the polylogarithm.

• Airy functions and Bessel functions.

• Error and exponential integral functions. (Among these functions are the Fres-
nel integrals, fresnelc and fresnels, which provide another way to evaluate
the Fresnel spiral in Figure 12.1.)

• Hypergeometric and Whittaker functions.

• The Lambert W function and the Wright function.

Useful functions for postprocessing are ccode, fortran, latex, and matlabFunction,
which produce C, Fortran, LATEX, and function handle representations, respectively,
of a symbolic expression.

348 The Symbolic Math Toolbox

[Babbage’s Analytical Engine] can arrange and combine its numerical quantities

exactly as if they were letters or any other general symbols;

and in fact it might bring out its results in algebraical notation,

were provisions made accordingly.

— AUGUSTA ADA BYRON, Countess of Lovelace (1843)

I’m very good at integral and differential calculus,

I know the scientific names of beings animalculous;

In short, in matters vegetable, animal, and mineral,

I am the very model of a modern Major-General.

— WILLIAM SCHWENCK GILBERT, The Pirates of Penzance. Act 1 (1879)

The particular form obtained by applying an analytical integration method

may prove to be unsuitable for practical purposes.

For instance, evaluating the formula may be

numerically unstable (due to cancellation, for instance) or even

impossible (due to division by zero).

— ARNOLD R. KROMMER and CHRISTOPH W. UEBERHUBER,

Computational Integration (1998)

Maple has bugs. It has always had bugs....

Every other computer algebra system also has bugs;

often different ones,

but remarkably many of these bugs are seen

throughout all computer algebra systems,

as a result of common design shortcomings.

Probably the most useful advice I can give for dealing with this is

be paranoid.

Check your results at least two ways (the more the better).

— ROB CORLESS, Essential Maple 7 (2002)

Chapter 21

Graphs

A graph comprises a set of nodes (or vertices) and a set of edges (or links), with
each edge connecting a pair of nodes. If the edges have a direction the graph is
directed, otherwise it is undirected. MATLAB has classes graph and digraph for
representing undirected and directed graphs, respectively. These classes allow node
labels to be stored and x–y locations to be specified (where appropriate), and they
have a collection of functions for computing with graphs and visualizing them.

A graph can be characterized by an adjacency matrix, which is a matrix A of zeros
and ones. For a directed graph, aij = 1 if there is an edge from node i to node j and
aij = 0 otherwise. For an undirected graph, aij = 1 if nodes i and j are connected by
an edge and aij = 0 otherwise. The adjacency matrix is symmetric for an undirected
graph and nonsymmetric, in general, for a directed one.

21.1. Undirected Graphs

We begin with a simple example of how to construct a graph:

>> a = [1 1 1 2 2 3 3 4 4 5 7];

>> b = [2 3 4 3 7 4 6 5 7 6 8];

>> names = {'A','B','C','D','E','F','G','H'};

>> G = graph(a,b,[],names)

G =

graph with properties:

Edges: [11×1 table]

Nodes: [8×1 table]

>> [numedges(G), numnodes(G)]

ans =

11 8

>> degree(G)'

ans =

3 3 4 4 2 2 3 1

Here, we have set up a graph with nodes named A to H and have specified the edges
in the vectors a and b: there is an edge from the a(i)th node to the b(i)th node
for i from 1 to length(a). The third argument to graph is a vector that specifies
weights to be applied to the edges; since we are constructing an unweighted graph
(a graph for which every edge has unit weight) this argument is left empty. The
numedges and numnodes functions return the number of edges and nodes in the graph,

349

350 Graphs

-2 -1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

 A

 B

 C D

 E
 F

 G

 H

Figure 21.1. Undirected graph.

respectively. For undirected graphs, the degree function returns the degree of each
node, which is the number of edges connected to the node. The function plot has
been overloaded to visualize graphs, so the command plot(G) produces Figure 21.1.
For small graphs such as this, plot shows the node labels. The plot function has
several layout options, selected with the 'Layout' input argument, and by default
chooses the layout automatically based on the size and structure of the graph.

Now we give each edge in the graph an associated weight, to produce a weighted
graph, plot the graph with the weights shown, then compute and highlight the min-
imum spanning tree. A tree is an undirected graph in which any two nodes are
connected by exactly one path. A spanning tree of a connected graph (one with a
path between any two nodes) is a subgraph forming a tree that includes all the nodes
(but usually not all the edges). A minimum spanning tree is a spanning tree for which
the sum of the weights along the edges is minimal:

w = [5 3 1 2 6 3 1 9 4 4 7];

G = graph(a,b,w,names);

h = plot(G,'EdgeLabel',G.Edges.Weight);

[T,p] = minspantree(G);

highlight(h,T)

axis off, box off

The plot is shown in Figure 21.2, with the edges of the minimal spanning tree thick-
ened using the highlight function.

Next, we generate a random graph by sampling from a preferential attachment
model, in which the graph is built node by node and a new node links to an exist-
ing node with a probability that is proportional to the current degree of that node.
The graph is generated using the CONTEST [163] toolbox. The toolbox returns an
adjacency matrix, so we use the ability of the graph function to accept an adjacency
matrix as its first argument. The graph, shown in Figure 21.3, is undirected. We use
the shortestpathtree function to find the shortest paths that connect node 1 with

21.2 Directed Graphs 351

 A

 B

 C D

 E
 F

 G

 H

5

3

1

2

6

3

19

4

4

7

Figure 21.2. Weighted undirected graph and a minimum spanning tree.

the other nodes, highlight these paths on the plot, and then plot the tree, which is
shown in Figure 21.4:

rng(25)

A = pref(100); % Function from CONTEST toolbox.

G = graph(A);

figure(1)

p = plot(G,'NodeLabel',{});

axis tight, axis off

tree = shortestpathtree(G,1);

highlight(p,tree,'EdgeColor','r')

highlight(p,1,'NodeColor','r')

figure(2)

plot(tree)

axis tight, axis off

If the individual shortest paths are required they can be obtained with the command

tree = shortestpathtree(G,1,'OutputForm','cell');

which returns the paths in a cell array.
Table 21.1 lists some of the functions for working with graphs.
The computational functions have options to select between different algorithms,

some of which may be applicable only to certain types of graph. For example, the
shortestpathtree function includes Dijkstra’s algorithm and the Bellman–Ford algo-
rithm. The 'method' name–value argument is used to select between the algorithms.

21.2. Directed Graphs

Now we focus on directed graphs, in which the edges have a direction.
The next example creates and displays a directed graph whose nodes represent a

selection of MATLAB topics. An edge from node i to node j indicates that topic j

builds on topic i:

352 Graphs

Figure 21.3. Random graph from preferential attachment model. Red edges mark
shortest paths from red node to the other nodes.

 1

 2 3

 4

 5 6 7

 8 9 10
 11

 12
 13

 14
 15
 16

 17
 18

 19
 20

 21
 22

 23
 24

 25
 26
 27

 28
 29

 30

 31
 32

 33
 34

 35

 36

 37
 38

 39

 40

 41

 42

 43

 44
 45

 46
 47
 48

 49

 50

 51

 52

 53

 54

 55
 56

 57
 58

 59

 60
 61

 62

 63

 64

 65

 66

 67
 68

 69
 70

 71

 72

 73
 74

 75
 76

 77

 78

 79
 80

 81
 82

 83

 84

 85

 86
 87

 88

 89

 90
 91

 92

 93

 94
 95

 96
 97

 98

 99
 100

Figure 21.4. Shortest path tree for graph in Figure 21.3.

21.2 Directed Graphs 353

Table 21.1. Selected graph functions.

graph Construct undirected graph
digraph Construct directed graph
plot Plot graph
highlight Highlight nodes/edges in plotted graph
degree Degree of graph nodes
numedges Number of edges in graph
numnodes Number of nodes in graph
neighbors Neighbors of graph node
nearest Nearest neighbors within radius
findedge Locate edge in graph
findnode Locate node in graph
reordernodes Reorder graph nodes
subgraph Extract subgraph
bfsearch Breadth-first graph search
dfsearch Depth-first graph search
conncomp Connected graph components
maxflow Maximum flow in graph
minspantree Minimum spanning tree of graph
centrality Quantify relative importance of nodes
isomorphism Compute equivalence relation between two graphs
isisomorphic Determine whether two graphs are isomorphic
shortestpath Shortest path between two single nodes
shortestpathtree Shortest path tree from node

354 Graphs

A = [0 1 0 0 1 0 0 0 0 1 0 0;

0 0 1 1 0 0 1 0 1 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 1 0 0 0 0 0 0;

0 0 0 0 0 0 1 1 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 1 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 1 1;

0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 0 0 0];

names = {'Data Types','Matrices','Sparse Matrices', ...

'Multi-Dim Arrays','Program Files','Functions','Graphs',...

'ODEs','Stiff ODEs','Basic Plots','3D Graphics',...

'Graphics Objects'};

G = digraph(A,names);

h = plot(G);

h.EdgeColor = 'm';

h.LineWidth = 1.5;

h.Marker = 'p';

h.MarkerSize = 10;

axis off

Figure 21.5 shows the plot. We specified the color and width of the edges and the
style and size of the node markers. Because this directed graph has no cycles, we are
able to construct a topological ordering of the nodes; that is, an ordering where every
edge connects a node to one that is further down the list:

>> N = toposort(G)

N =

1 10 12 11 5 6 8 2 9 7 4 3

>> names(N)'

ans =

12×1 cell array

'Data Types'

'Basic Plots'

'Graphics Objects'

'3D Graphics'

'Program Files'

'Functions'

'ODEs'

'Matrices'

'Stiff ODEs'

'Graphs'

'Multi-Dim Arrays'

'Sparse Matrices'

This provides a suitable order in which to digest the topics.
Figure 21.6 shows a larger directed network. Here, the 131 nodes represent

21.2 Directed Graphs 355

 Data Types

 Matrices

 Sparse Matrices

 Multi-Dim Arrays

 Program Files

 Functions

 Graphs
 ODEs

 Stiff ODEs

 Basic Plots

 3D Graphics

 Graphics Objects

Figure 21.5. Directed graph.

frontal neurons in C. elegans, a transparent roundworm of length about 1 millime-
ter. The 764 directed edges correspond to experimentally observed anatomical con-
nections and the nodes have well-defined locations in 2D physical space. Using
the celegans131.mat file from Marcus Kaiser’s web page at http://www.dynamic-

connectome.org/?page_id=25 we constructed the figure as follows:

load celegans131

% Gives celegans131labels, celegans131matrix, celegans131positions

G = digraph(celegans131matrix,celegans131labels);

h = plot(G,'XData',celegans131positions(:,1),...

'YData',celegans131positions(:,2));

h.NodeColor = 'k'; set(h,'EdgeAlpha',1), set(h,'MarkerSize',4)

axis tight

Because of the size of the network, node labels were automatically suppressed. Note
that the vertical scaling is an order of magnitude smaller than the horizontal scaling—
the worm is long and thin.

To experiment further, we select the subgraph induced by the first 30 nodes, which
is shown in Figure 21.7:

Gsub = subgraph(G,[1:30]);

X = celegans131positions(1:30,1);

Y = celegans131positions(1:30,2);

h = plot(Gsub,'XData',X,'YData',Y);

h.NodeColor = 'k'; set(h,'EdgeAlpha',1)

axis tight

Next we use the centrality function to quantify the relative importance of each
node. This function supports several measures from the network science literature.
We choose the measure attributed to Google’s PageRank algorithm:

http://www.dynamic-connectome.org/?page_id=25
http://www.dynamic-connectome.org/?page_id=25

356 Graphs

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Figure 21.6. Neuronal network of C. elegans.

0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095

-0.015

-0.01

-0.005

0

0.005

0.01

 ADFL

 ADFR

 ADLL

 ADLR

 AFDL

 AFDR

 AIAL

 AIAR

 AIBR

 AINL

 AINR

 AIZL
 AIZR

 ALA

 ASEL

 ASER

 ASGL

 ASGR

 ASHL

 ASHR

 ASIL

 ASIR

 ASJL

 ASJR

 ASKL
 ASKR

 AUAL
 AUAR

 AVAL

 AVAR

Figure 21.7. Subnetwork from C. elegans data.

21.2 Directed Graphs 357

>> pg_ranks = centrality(Gsub,'pagerank')'

>> pg_ranks

pg_ranks =

Columns 1 through 6

0.0533 0.0256 0.1011 0.0291 0.0180 0.0111

Columns 7 through 12

0.0618 0.0425 0.0111 0.0334 0.0253 0.0794

Columns 13 through 18

0.0133 0.0072 0.0256 0.0323 0.0285 0.0133

Columns 19 through 24

0.0610 0.0281 0.0430 0.0258 0.0112 0.0185

Columns 25 through 30

0.0233 0.0133 0.0278 0.0111 0.0971 0.0278

To visualize these centralities, we first reduce clutter by ignoring physical x–y coor-
dinates and using the default graph layout. Then we separate the nodes into three
categories according to their centrality scores, and use corresponding marker sizes for
the nodes. Here, we make use of the discretize function, which groups numeric
values into discrete bins:

p = plot(Gsub);

axis off

Gsubedges = linspace(min(pg_ranks),max(pg_ranks),4);

Gsubbins = discretize(pg_ranks,Gsubedges);

p.MarkerSize = 5*Gsubbins;

p.NodeColor = 'r'; set(p,'EdgeAlpha',1)

p.EdgeColor = [0.61,0.30,0.08]; % saddlebrown

Figure 21.8 shows the result. Finally, we sort the centrality scores and display the
top five nodes:

>> [pg,pgind] = sort(pg_ranks,'Descend');

>> top5 = celegans131labels(pgind(1:5))

top5 =

5×1 cell array

'ADLL'

'AVAL'

'AIZL'

'AIAL'

'ASHL'

358 Graphs

 ADFL

 ADFR

 ADLL

 ADLR

 AFDL

 AFDR

 AIAL

 AIAR

 AIBR

 AINL

 AINR

 AIZL

 AIZR

 ALA

 ASEL
 ASER

 ASGL

 ASGR

 ASHL

 ASHR

 ASIL

 ASIR

 ASJL

 ASJR

 ASKL

 ASKR

 AUAL

 AUAR

 AVAL

 AVAR

Figure 21.8. Visualization of PageRank centrality in C. elegans subnetwork.

Chemical Graphs
Use of the word graph in the sense of this chapter first arose in the nine-
teenth century. Mathematicians realized that the objects they were studying
had close connections with the graphic notation that chemists were using
to describe molecular formulas. For example, methane, CH4, could be rep-
resented as a central node, C, of degree four connected to four leaf nodes,
H, of degree one. Sylvester (who coined the word “matrix” in 1850, and
contributed much to the early development of matrix theory [72]) wrote
[162]

“It may not be wholly without interest to some of the readers
of Nature to be made acquainted with an analogy that has re-
cently forcibly impressed me between branches of human knowl-
edge apparently so dissimilar as modern chemistry and modern
algebra.”

21.2 Directed Graphs 359

The theory of graphs generally deals only with the

number of elements in the network and

their relationships with respect to each other

in terms of the characteristics of the edge set.

This very broad definition is capable of representing systems in

bewildering detail.

— DUNCAN J. WATTS, Small Worlds. The Dynamics of

Networks between Order and Randomness (1999)

Although graphs can be represented pictorially,

most computations of graph properties are accomplished by way of either

an adjacency matrix or adjacency list.

— DUNCAN J. WATTS, Small Worlds. The Dynamics

of Networks between Order and Randomness (1999)

When ideas and tools move from one field to another,

the movement is generally from the natural to the social sciences.

In recent years, however, there has been a

major movement in the opposite direction.

The idea of centrality and the tools for its measurement were

originally developed in the social science field of social network analysis.

But currently the concept and tools of centrality

are being used widely in physics and biology.

— LINTON C. FREEMAN, Going the Wrong Way Down

a One-Way Street: Centrality in Physics and Biology (2008)

Chapter 22

Large Data Sets

MATLAB has special features for working with data sets that are too large to fit into
the computer’s random access memory (RAM). In this chapter we briefly introduce
some of these features.

22.1. Datastores

A datastore is a repository for collections of data that are arranged in one or more
files having the same structure and formatting and are too large to fit in memory.

The best way to introduce datastores is with a simple example. We make use of
a CSV file twitter.csv, which is a Twitter archive of one of the authors’ Twitter
accounts and consists of lines comprising fields (numbers or text) separated by com-
mas. In our case the first line of the file is a header line whose fields contain column
names.

We first create the datastore:

>> ds = datastore('twitter.csv')

ds =

TabularTextDatastore with properties:

Files: {

'd:\twitter.csv'

}

FileEncoding: 'UTF-8'

ReadVariableNames: true

VariableNames: {'tweet_id', 'in_reply_to_status_id', ...

'in_reply_to_user_id' ... and 7 more}

Text Format Properties:

NumHeaderLines: 0

Delimiter: ','

RowDelimiter: '\r\n'

TreatAsMissing: ''

MissingValue: NaN

Advanced Text Format Properties:

TextscanFormats: {'%q', '%q', '%q' ... and 7 more}

ExponentCharacters: 'eEdD'

CommentStyle: ''

Whitespace: ' \b\t'

361

362 Large Data Sets

MultipleDelimitersAsOne: false

Properties that control the table returned by preview, read, readall:

SelectedVariableNames: {'tweet_id', 'in_reply_to_status_id', ...

'in_reply_to_user_id' ... and 7 more}

SelectedFormats: {'%q', '%q', '%q' ... and 7 more}

ReadSize: 20000 rows

We can preview the data (view a subset of it) using the preview function, but first
we choose the columns to be shown, as a full row contains too much information to
display:

>> ds.SelectedVariableNames = {'tweet_id','source'};

>> data = preview(ds)

data =

tweet_id source

____________________ ___

'685478255789473793' 'Twitter Web Client'

'685478112889565184' 'Twitter Web Client'

'685100412215685120' 'Tweetbot for iOS'

'684732471183818752' 'Hootsuite'

'684349803468316672' 'Hootsuite'

'684050694626766848' 'Twitter Web Client'

'684022799053250560' 'Hootsuite'

'683977163767439362' 'Twitter Web Client'

>> whos

Name Size Bytes Class Attributes

data 8×2 4266 table

ds 1×1 8 matlab.io.datastore.TabularTextDatastore

Notice that data is of class table (see Section 18.6).
At this point only the initial rows of twitter.csv shown in the preview have been

read in. We can start to read the complete file using the read function:

>> tweetdata = read(ds); % Read in first chunk of data.

>> size(tweetdata)

ans =

1319 2

>> hasdata(ds) % Is there any more data to read in?

ans =

logical

0

Data is read in a chunk at a time, the (default) size of a chunk being the ReadSize,
which is 20,000 rows, as shown by the output from the datastore command. With
only 1,319 rows this is a very small data set that can easily be held entirely in memory.
But there are many Twitter data sets that are too voluminous to store (for example,

22.1 Datastores 363

we might be looking at all the Twitter data for a period of time containing a certain
hashtag).

For a sufficiently large data set it may not be possible to store even a subset of the
columns, so we may need to process the data within each chunk as it is read in. To
illustrate, suppose we wish to count the proportion of tweets that contain the string
“SIAM”. We artificially set the chunk size to 100, in order to imitate the case of a
large data set:

reset(ds) % Reset the datastore so reads are from the start.

ds.ReadSize = 100;

nSIAM = 0; nrows = 0;

ds.SelectedVariableNames = {'text'}; % The text of the tweet.

while hasdata(ds)

tweet_text = read(ds);

c = table2cell(tweet_text);

len = length(c);

nrows = nrows + len;

for i = 1:len

nSIAM = nSIAM + ~isempty(strfind(c{i},'SIAM'));

end

end

fprintf('%g rows, %g occurrences of ''SIAM'': ', nrows, nSIAM)

fprintf('percentage = %4.1f\n', (nSIAM/nrows)*100)

The output is

1319 rows, 300 occurrences of 'SIAM': percentage = 22.7

Now we carry out a separate computation that reads in the column giving the
date and time of tweeting and plot histograms of the day of the week and the hour.
The default chunk size reads the table in one go so we have no need for a while

hasdata(ds) loop. We use the datetime function, which converts the date and time
information into the MATLAB datetime data type, and extract from that the days
of the week:

reset(ds)

ds.ReadSize = 2000; % Restore deafult.

ds.SelectedVariableNames = {'timestamp'};

tweet_times = read(ds);

t = datetime(table2cell(tweet_times),...

'InputFormat', ['yyyy-MM-dd HH:mm:ss Z'], ...

'TimeZone','local');

% Get day of the week and hour of tweets.

tweet_day = day(t,'dayofweek');

valueset = 1:7;

catnames = {'Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat'};

tweet_day_names = categorical(tweet_day,valueset,catnames);

tweet_hour = hour(t);

subplot(2,1,1)

364 Large Data Sets

Figure 22.1. Histograms of days and times of tweets.

histogram(tweet_day_names), title('Day of tweets')

subplot(2,1,2)

histogram(tweet_hour), title('Hour of tweets')

xlim([0 23]), set(gca,'xtick',0:2:23)

Here, we formed a categorical array C (see Section 18.6) with category names that
are abbreviations of the days of the week, and used the fact that histogram can plot
such arrays. The histograms are shown in Figure 22.1.

22.2. MapReduce

An important methodology for working with large data sets is MapReduce, imple-
mented in function mapreduce, which uses a datastore to process data in chunks that
fit into memory. Each chunk undergoes a map phase, which preprocesses it, then the
intermediate data chunks go through a reduce phase, which takes the outputs from
the map function, does further computation, and outputs the results. There is great
flexibility in how the outputs from the map function can be rearranged and combined
before being passed to the reduce function.

The real power of MapReduce comes from the ability to parallelize the map oper-
ations, which are independent, and the Parallel Computing Toolbox comes into play
here.

For details of mapreduce see doc mapreduce.

22.3. Tall Arrays

Tall arrays provide a way to work with data sets that do not fit into memory and
are stored within a datastore. Calculations on tall arrays are delayed until a result is

22.3 Tall Arrays 365

explicitly requested, with MATLAB optimizing those calculations to try to minimize
the number of passes through the data.

Tall arrays are created with the tall function, which take as argument an array
(numeric, string, datetime, or one of several other data types) or a datastore.

We give an example that uses a text file in which each line contains a string
representing the page locator for an index entry in the LATEX source for a draft of
this book. If a particular term is indexed m times on page n then there are m lines
containing n in the file. The code

ds = datastore('index_entries.txt','Type','tabulartext');

ds_tall = tall(ds) % Tall table.

pages = ds_tall.Var1 % Tall numeric vector.

whos pages ds_tall

n = length(pages)

last_page = max(pages);

[n,last_page] = gather(n,last_page)

coverage = length(unique(pages))/last_page; % Prop. pages indexed.

coverage = gather(coverage)

h = histogram(pages,1:last_page);

h.EdgeColor = h.FaceColor; % Otherwise bars look black.

[~,most_indexed_page] = max(h.Values)

produces Figure 22.2 and the output

ds_tall =

M×1 tall table

Var1

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

:

:

pages =

M×1 tall double column vector

1

1

1

1

1

1

1

1

:

:

366 Large Data Sets

Name Size Bytes Class Attributes

ds_tall 1×1 310 tall

pages 1×1 44 tall

n =

tall double

?

Preview deferred. Learn more.

Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 1: Completed in 0 sec

Evaluation completed in 0 sec

n =

2538

last_page =

435

Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 1: Completed in 0 sec

Evaluation completed in 0 sec

coverage =

7.4023e-01

Evaluating tall expression using the Local MATLAB Session:

- Pass 1 of 1: Completed in 0 sec

Evaluation completed in 0 sec

most_indexed_page =

42

As the output shows, computations on tall data are deferred until the gather function
is called with the relevant variables. In general, one should try to minimize the number
of calls to gather. In this example the data is not very large and the computations
could easily be done in memory, but the same code works with a data file too large
to fit into memory.

The kinds of operations that should be carried out on tall arrays are ones whose
results fit into memory, which can be thought of as reduction operations. Many
MATLAB functions support tall arrays (including many in the Statistics and Machine
Learning Toolbox); type methods('tall') for a list.

22.3 Tall Arrays 367

Figure 22.2. Histogram of pages of index commands.

Kirk: “‘Insufficient data’ is not sufficient, Mr. Spock.

You’re the Science Officer;

you’re supposed to have sufficient data all the time.”

— Star Trek: The Immunity Syndrome (Stardate 4307.1)

A key word here is distillation; a lovely word.

We must distil the outputs from the data.

Many of us have sat through exhaustive presentations where

diligent analysts have turned some handle and

converted a kilogram of data into a kilogram of powerpoint,

and they expect our gratitude.

Decisions have to be both evidence-based and justified.

Yet they should be ‘smart’ because they are data-driven.

— PETER GRINDROD, Mathematical Underpinnings

of Analytics. Theory and Applications (2015)

The thing which fascinates me is how we find patterns where previously

others couldn’t find them.

As the quantity and variety of data has increased,

and our abilities to work with that raw material have got better,

we start to see patterns which had previously remained hidden.

— PETER LAFLIN, Leeds’ role in the data revolution (2013)

“Data! Data! Data!” he cried impatiently.

“I can’t make bricks without clay.”

— ARTHUR CONAN DOYLE, The Adventure of the Copper Beeches (1882)

Chapter 23

Optimizing Codes

Most users of MATLAB find that computations are completed fast enough that execu-
tion time is not usually a cause for concern. Some computations, though, particularly
when the problems are large, require a significant time and it is natural to ask whether
anything can be done to speed them up. This chapter describes some techniques that
produce better performance from MATLAB codes. They all exploit the fact that
MATLAB lies somewhere between an interpreted language and a compiled language
and has dynamic memory allocation.

MATLAB does automatic optimization of code via its Just-In-Time (JIT) accel-
erator, which compiles code at run time. These capabilities are under continuing
development and improve with each release. Consequently, we will say very little
about automatic optimization and will concentrate instead on useful programming
techniques, some of which can probably never be replaced by automatic optimization
of code.

The MATLAB profiler is a useful tool when you are optimizing codes, as it can
help you decide which parts of the code to focus on. See Section 16.4 for details.

For more details of how to optimize the performance of codes see [2].

23.1. Timing Code

In order to understand how to optimize code we need a way of timing how long it
takes to execute. MATLAB provides two main ways to do so. First, surrounding a
piece of code by tic and toc causes the time it takes for that code to run to be printed
when the toc statement is reached. Here, we apply tic and toc to the fox rabbit

function from Listing 12.4:

>> tic, fox_rabbit; toc

Elapsed time is 1.202347 seconds.

>> tic, fox_rabbit; toc

Elapsed time is 0.192736 seconds.

We ran the function twice and found that it executed around six times faster the
second time than the first! The reason is that the first time a program is run MATLAB
has to process and JIT-compile the code, but on subsequent executions it can reuse
the information generated. Hence one should always run a code more than once in
order to obtain reliable timings. Another complication is that if the code runs quickly
(a small fraction of a second) it may be necessary to run it many times and take
an average in order to obtain a time that is not unduly influenced by the natural
variability of system overheads.

369

370 Optimizing Codes

Note that the command clear all clears compiled code, among other things, so
it is best avoided, especially within a program.

The function timeit deals with both the issues just mentioned. It takes a function
as argument, runs the function once, then runs the function in a loop enough times
that the loop takes about 1 millisecond to execute, and finally takes the median time.
This strategy, together with several refinements, is designed to provide more reliable
timings than the obvious use of tic and toc:

timeit(@fox_rabbit)

ans =

7.6380e-02

To time a function with arguments, an anonymous function can be constructed:

>> A = gallery('ris',500); f = @()eig(A);

>> timeit(f) % Call eig with one output argument.

ans =

1.1784e-02

>> timeit(f,2) % Call eig with two output arguments.

ans =

1.6634e-02

Here, we have used the optional second argument of timeit, which specifies how many
output arguments to request when the first argument is called. Here, we are comparing
the time to compute just the eigenvalues with the time to compute eigenvalues and
eigenvectors (see Section 9.8.1).

Multiple tic and toc commands can be intertwined by using the syntax

timer1 = tic;

...

elapse1 = toc(timer1)

in which the toc statement measures the elapsed time since timer1 was set up. A
second pair timer2 = tic . . . toc(timer2) can overlap the first.

23.2. Vectorization

Since MATLAB is a matrix language, many of the matrix-level operations and func-
tions are carried out internally using compiled C or assembly code and are therefore
executed at near-optimum efficiency. This is true of the arithmetic operators *, +,
-, \, / and of relational and logical operators. However, for loops may be executed
relatively slowly: depending on what is inside the loop, MATLAB may or may not
be able to optimize the loop. One of the most important tips for producing efficient
code is to avoid for loops in favor of vectorized constructs, that is, to convert for

loops into equivalent vector or matrix operations. Vectorization has important ben-
efits beyond simply increasing speed of execution. It can lead to shorter and more
readable MATLAB code. Furthermore, it expresses algorithms in terms of high-level
constructs that are more appropriate for high-performance computing.

Consider the following example:

23.2 Vectorization 371

>> n = 5e7; x = randn(n,1);

>> tic, s = 0; for i=1:n, s = s + x(i)^2; end, toc

Elapsed time is 0.415446 seconds.

>> tic, s = sum(x.^2); toc

Elapsed time is 0.134303 seconds.

>> tic, s = norm(x)^2; toc

Elapsed time is 0.168398 seconds.

In this example we compute the sum of squares of the elements in a random vector
in three ways: with a for loop, with an elementwise squaring followed by a call to
sum, and with a single call to norm. The vectorized sum approach is three times
faster than the loop. The norm call is slightly slower than sum, probably because the
norm computation takes care to avoid underflow and overflow whenever possible. It
is important to emphasize that these timings vary by a few percent from run to run.

The for loop in Listing 10.2 on p. 163 can be vectorized, assuming that f returns
a vector output for a vector argument. The loop and the statement before it can be
replaced by

x = linspace(0,1,n);

p = x*f(1) + (x-1)*f(0);

max_err = max(abs(f(x)-p));

For a slightly more complicated example of vectorization, consider the inner loop
of Gaussian elimination applied to an n-by-n matrix A, which can be written

for j = k+1:n

for i = k+1:n;

A(i,j) = A(i,j) - A(i,k)*A(k,j)/A(k,k);

end

end

Both loops can be avoided, simply by deleting the two for and end statements:

j = k+1:n;

i = k+1:n;

A(i,j) = A(i,j) - A(i,k)*A(k,j)/A(k,k);

The approximately (n − k)2 scalar multiplications and additions have now been ex-
pressed as one matrix multiplication and one matrix addition. With n = 10,000

and k = 1 we timed the two-loop code at 2.49 seconds and the vectorized version
at 0.77 seconds—again vectorization yields a substantial improvement.

The next example concerns premultiplication of a matrix by a Givens rotation in
the (j, k)-plane, which replaces rows j and k by linear combinations of themselves. It
might be coded as

temp = A(j,:);

A(j,:) = c*A(j,:) - s*A(k,:);

A(k,:) = s*temp + c*A(k,:);

By expressing the computation as a single matrix multiplication we can shorten the
code and dispense with the temporary variable:

372 Optimizing Codes

A([j k],:) = [c -s; s c] * A([j k],:);

The second version is approximately twice as fast for n = 10,000.
A good principle is to maximize the use of built-in MATLAB functions. Consider,

for example, this code to assign to row_norm the ∞-norms of the rows of A:

for i=1:n

row_norms(i) = norm(A(i,:), inf);

end

It can be replaced by the single statement

row_norms = max(abs(A),[],2);

(see p. 68), which is shorter and runs much more quickly. Similarly, the factorial n!
is more quickly computed by prod(1:n) than by

p = 1; for i = 1:n, p = p*i; end

(in fact, the MATLAB function factorial uses prod in this way).
As a final example, we start with the following code to generate and plot an

approximate Brownian (standard Wiener) path [101], which produces Figure 23.1:

N = 1e6; dt = 1/N;

w(1) = 0;

for j = 2:N+1

w(j) = w(j-1) + sqrt(dt)*randn;

end

plot([0:dt:1],w)

This computation can be speeded up by preallocating the array w (see the next section)
and by computing sqrt(dt) outside the loop. However, we obtain a more dramatic
improvement by vectorizing with the help of the cumulative sum function, cumsum:

N = 1e6; dt = 1/N;

w = sqrt(dt)*cumsum([0;randn(N,1)]);

plot([0:dt:1],w)

This produces Figure 23.1 roughly five times more quickly than the original version.
Vectorization plays an important role in the numerical methods codes of Chap-

ter 12. These codes may require many function evaluations to solve their respective
problems, and it can be much more efficient to carry out a certain number of evalua-
tions on vectors than a larger number of scalar function evaluations, not least because
of the reduced overheads. The function integral requires the integrand to be vector-
ized, while the stiff ODE solvers and bvp4c can take advantage of vectorized function
evaluations (which the user specifies via odeset and bvpset).

23.3. Accessing Matrices by Column

MATLAB stores numeric arrays as a vector of elements, the order of the elements
being that obtained when the array is accessed by looping over the subscripts from
first to last. This is the order obtained with the (:) subscripting operation:

23.3 Accessing Matrices by Column 373

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 23.1. Approximate Brownian path.

>> A = 1:8; A = reshape(A,2,2,2)

A(:,:,1) =

1 3

2 4

A(:,:,2) =

5 7

6 8

>> A(:)'

ans =

1 2 3 4 5 6 7 8

In particular, matrices are stored by column, that is, in column major order:

>> A = magic(2)

A =

1 3

4 2

>> A(:)'

ans =

1 4 3 2

This is the reason why functions such as max, sum, and sort default to working on
the columns, rather than the rows, when given a matrix argument.

For efficiency, it is important to access the elements of an array in the order in
which they are stored, in order to minimize data movement between different levels
of the computer’s memory hierarchy. For a large matrix not all elements will fit into
cache memory, and in an extreme case some elements may need to be paged to disk,
so accessing noncontiguous elements may incur significant costs.

374 Optimizing Codes

The Gaussian elimination example on p. 371 has two nested loops. It correctly
has the outer j loop indexing the columns, so that the inner loop varies the row index
and accesses the matrix down the columns. As that example shows, however, code
can often be vectorized so that MATLAB itself makes the decision about the order
in which to access matrix elements.

23.4. Preallocating Arrays

One of the attractions of MATLAB is that arrays need not be declared before first
use: assignment to an array element beyond the upper bounds of the array causes
MATLAB to extend the dimensions of the array as necessary. If overused, this flexi-
bility can lead to inefficiencies, however. Consider the following implementation of a
recurrence:

% x has not so far been assigned.

x(1:2) = 1;

for i=3:n, x(i) = 0.25*x(i-1)^2 - x(i-2); end

On each iteration of the loop, MATLAB must increase the length of the vector x by
1. In the next version x is preallocated as a vector of precisely the length needed, so
no resizing operations are required during execution of the loop:

% x has not so far been assigned.

x = ones(n,1);

for i=3:n, x(i) = 0.25*x(i-1)^2 - x(i-2); end

With n = 1e7, the first piece of code took 0.81 seconds and the second 0.19 seconds,
showing that the first version spends most of its time doing memory allocation rather
than floating-point arithmetic.

Preallocation has the added advantage of reducing the fragmentation of memory
resulting from dynamic memory allocation and deallocation.

If the order in which a loop body is evaluated does not matter then a trick to
avoid preallocation is to run the loop backward, as in

for i = n:-1:1, x(i) = atanh(i/(i+1)); end

Here, x is allocated as an n-vector on the first iteration, just as if we had written x =

zeros(1,n) before the loop.
You can preallocate an array structure with repmat(struct(...)) and a cell

array with the cell function; see Section 18.7.

23.5. Miscellaneous Optimizations

Suppose you wish to set up an n-by-n matrix of twos. The obvious assignment is

A = 2*ones(n);

The n2 floating-point multiplications can be avoided by using

A = repmat(2,n);

The repmat approach is much faster for large n. This use of repmat is essentially the
same as assigning

23.6 Illustration: Bifurcation Diagram 375

A = zeros(n); A(:) = 2;

in which scalar expansion is used to fill A.
There is one optimization that is automatically performed by MATLAB. Argu-

ments that are passed to a function are not copied into the function’s workspace
unless they are altered within the function. Therefore there is no memory penalty
for passing large variables to a function provided the function does not alter those
variables.

23.6. Illustration: Bifurcation Diagram

For a practical example of optimizing MATLAB code we consider a problem from
nonlinear dynamics. We wish to examine the long-term behavior of the iteration

yk = F (yk−1), k ≥ 2, y1 given,

where the function F is defined by

F (y) = y + h
(
y + 1

2hy(1− y)
) (

1− y − 1
2hy(1− y)

)
.

Here, h > 0 is a parameter. (This map corresponds to the midpoint or modified Euler
method [148] with stepsize h applied to the logistic ODE dy(t)/dt = y(t)(1 − y(t))
with initial value y1.) For a range of h-values and for a few initial values, y1, we would
like to run the iteration for a “long time”, say as far as k = 500, and then plot the
next 20 iterates {yi}520i=501. For each h on the x-axis we will superimpose {yi}520i=501

onto the y-axis to produce a so-called bifurcation diagram.
Choosing values of h given by 1:0.005:4 and using initial values 0.2:0.5:2.7

we arrive at the script bif1 in Listing 23.1. This is a straightforward implementation
that uses three nested for loops and does not preallocate the array y before the first
time around the inner loop. Figure 23.2 shows the result.

The script bif2 in Listing 23.2 is an equivalent, but faster, implementation. Two
of the loops have been removed and a single plot command is used. Here, we stack the
iterates corresponding to all h- and y1-values into one long vector, and use elementwise
multiplication to perform the iteration simultaneously on the components of this
vector. The array Ydata, which is used to store the data for the plot, is preallocated
to the correct dimensions before use. The vectorized code produces Figure 23.2 about
18 times more quickly than the original version.

An example where a sequence of optimization steps is applied to a MATLAB code
in mathematical finance may be found in [66].

23.7. External Codes

Instead of speeding up an existing MATLAB code you may prefer to call a routine
coded in another language, perhaps from a library. Another reason to call an external
routine would be if you cannot find a MATLAB function (built-in or from elsewhere)
to carry out the computational task at hand.

Code and libraries written in other languages and frameworks, such as C, C++,
Fortran, Java, Python, and .NET, can be called from MATLAB, in particular via the
MEX facility that interfaces C, C++, and Fortran codes with MATLAB. For details,
see web([docroot ’/matlab/calling-external-functions.html’]).

376 Optimizing Codes

Listing 23.1. Script bif1.

%BIF1 Bifurcation diagram for modified Euler/logistic map.

% Computes a numerical bifurcation diagram for a map of the form

% y_k = F(y_{k-1}) arising from the modified Euler method

% applied to a logistic ODE.

%

% Slower version using multiple for loops.

for h = 1:0.005:4

for iv = 0.2:0.5:2.7

y(1) = iv;

for k = 2:520

y(k) = y(k-1) + h*(y(k-1)+0.5*h*y(k-1)*(1-y(k-1)))*...

(1-y(k-1)-0.5*h*y(k-1)*(1-y(k-1)));

end

plot(h*ones(20,1),y(501:520),'.k'), hold on

end

end

title('Modified Euler/logistic map','FontSize',14)

xlabel('h'), ylabel('last 20 y')

grid on, hold off

1 1.5 2 2.5 3 3.5 4

h

0

0.5

1

1.5

2

2.5

3

la
s
t

2
0

 y

Modified Euler/logistic map

Figure 23.2. Numerical bifurcation diagram.

23.7 External Codes 377

Listing 23.2. Script bif2.

%BIF2 Bifurcation diagram for modified Euler/logistic map.

% Computes a numerical bifurcation diagram for a map of the form

% y_k = F(y_{k-1}) arising from the modified Euler method

% applied to a logistic ODE.

%

% Fast, vectorized version.

h = (1:0.005:4)';

iv = 0.2:0.5:2.7;

hvals = repmat(h,length(iv),1);

Ydata = zeros((length(hvals)),20);

y = kron(iv',ones(size(h)));

for k=2:500

y = y + hvals.*(y+0.5*hvals.*y.*(1-y)).*(1-y-0.5*hvals.*y.*(1-y));

end

for k=1:20

y = y + hvals.*(y+0.5*hvals.*y.*(1-y)).*(1-y-0.5*hvals.*y.*(1-y));

Ydata(:,k) = y;

end

plot(hvals,Ydata,'.k')

title('Modified Euler/Logistic Map','FontSize',14)

xlabel('h'), ylabel('last 20 y'), grid on

378 Optimizing Codes

Third-party MATLAB toolboxes also provide new functionality and potentially
faster execution. Of these we mention only the NAG Toolbox for MATLAB (http:
//www.nag.co.uk), which contains over 1,500 functions providing access to the NAG
Library—a comprehensive library of codes for numerical computation that is older
than MATLAB and, like MATLAB, is constantly evolving.

Vectorization means using MATLAB language constructs to

eliminate program loops,

usually resulting in programs that

run faster and are more readable.

— STEVE EDDINS and LOREN SHURE, MATLAB Digest (September 2001)

Entities should not be multiplied unnecessarily.

— WILLIAM OF OCCAM (c. 1320)

Life is too short to spend writing for loops.

— The MathWorks, Getting Started with MATLAB (1998)

In our six lines of MATLAB,

not a single loop has appeared explicitly,

though at least one loop is implicit in every line.

— LLOYD N. TREFETHEN and DAVID BAU, III, Numerical Linear Algebra (1997)

Make it right before you make it faster.

— BRIAN W. KERNIGHAN and P. J. PLAUGER,

The Elements of Programming Style (1978)

A useful rule-of-thumb is that the

execution time of a MATLAB function is

proportional to the number of statements executed,

no matter what those statements actually do.

— CLEVE B. MOLER, MATLAB News & Notes (Spring 1996)

The only recommendation that has withstood the test of time well

for all MATLAB releases is to preallocate large data arrays.

— YAIR ALTMAN, Accelerating MATLAB Performance (2015)

http://www.nag.co.uk
http://www.nag.co.uk

Chapter 24

Tricks and Tips

Our approach in this book has been to present material of interest to the majority
of MATLAB users, omitting topics of more specialized interest. In this chapter we
relax this philosophy and describe some tricks and tips that, while of limited use, can
be invaluable when they are needed and are of general interest as examples of more
advanced MATLAB matters.

24.1. Empty Arrays

In Section 5.4 we noted that MATLAB supports empty matrices—ones with one or
both dimensions zero—and operations on them. More generally, multidimensional
arrays can have zero dimensions:

>> double.empty(1,0,3)

ans =

1×0×3 empty double array

We now give some examples of the utility of empty matrices and arrays.
The Schur complement of A11 in

[
A11 A12

A21 A22

]
is the matrix A22 −A21A

−1
11 A12. Sup-

pose we compute the Schur complement in a context where the dimensions of the
blocks can vary and that we encounter an edge case where A22 is the whole matrix.
With empty matrices the Schur complement formula evaluates correctly to A22:

>> m = 0; n = 2; rng(1)

>> A11 = rand(m,m); A12 = rand(m,n); A21 = rand(n,m); A22 = rand(n,n)

>> S = A22 - A21*(A11\A12)

A22 =

4.1702e-01 1.1437e-04

7.2032e-01 3.0233e-01

S =

4.1702e-01 1.1437e-04

7.2032e-01 3.0233e-01

Empty arrays can facilitate loop vectorization. Consider the nested loops

for i = j-1:-1:1

s = 0;

for k=i+1:j-1

s = s + R(i,k)*R(k,j);

end

end

379

380 Tricks and Tips

The inner loop can be vectorized to give

for i = j-1:-1:1

s = R(i,i+1:j-1)*R(i+1:j-1,j);

end

What happens when i = j-1 and the index vector i+1:j-1 is empty? Fortunately,
R(i,i+1:j-1) evaluates to a 1-by-0 matrix and R(i+1:j-1,j) to a 0-by-1 matrix,
and s is assigned the desired value 0.

24.2. Exploiting Infinities

The infinities inf and -inf can be exploited to good effect.
Suppose you wish to find the maximum value of a function f on a grid of points

x(1:n) and f does not vectorize, so that you cannot write max(f(x)). Then you need
to write a loop, with a variable fmax (say) initialized to some value at least as small
as any value of f that can be encountered. Simply assign -inf:

fmax = -inf;

for i=1:n

fmax = max(fmax, f(x(i)));

end

Next, suppose that we are given p with 1 ≤ p ≤ ∞ and wish to evaluate the dual
of the vector p-norm, that is, the q-norm, where p−1 + q−1 = 1. If we solve for q we
obtain

q =
1

1− 1/p
.

This formula clearly evaluates correctly for all 1 < p < ∞. For p = ∞ it yields the
correct value 1, since 1/∞ = 0, and for p = 1 it yields q = 1/0 =∞. So in MATLAB
we can simply write norm(x,1/(1-1/p)) without treating the cases p = 1 and p = inf

specially.

24.3. Permutations

Permutations are important when using MATLAB for data processing and for matrix
computations. A permutation can be represented as a vector or as a matrix. Consider
first the vector form, which is produced by (for example) the sort function:

>> x = [10 -1 3 9 8 7]

x =

10 -1 3 9 8 7

>> [s,ix] = sort(x)

s =

-1 3 7 8 9 10

ix =

2 3 6 5 4 1

The output of sort is a sorted vector s and a permutation vector ix such that x(ix)
equals s. To regenerate x from s we need the inverse of the permutation ix. This
can be obtained as follows:

24.3 Permutations 381

>> ix_inv(ix) = 1:length(ix)

ix_inv =

6 1 2 5 4 3

>> s(ix_inv)

ans =

10 -1 3 9 8 7

In matrix computations it is sometimes necessary to convert between the vector
and matrix representations of a permutation. The following example illustrates how
this is done, and shows how to permute the rows or columns of a matrix using either
form:

>> p = [4 1 3 2]

p =

4 1 3 2

>> I = eye(4);

>> P = I(p,:);

P =

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

>> A = magic(4)

A =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

>> P*A

ans =

4 14 15 1

16 2 3 13

9 7 6 12

5 11 10 8

>> A(p,:)

ans =

4 14 15 1

16 2 3 13

9 7 6 12

5 11 10 8

>> A*P'

ans =

13 16 3 2

8 5 10 11

12 9 6 7

382 Tricks and Tips

1 4 15 14

>> A(:,p)

ans =

13 16 3 2

8 5 10 11

12 9 6 7

1 4 15 14

>> p_from_P = (1:4)*P'

p_from_P =

4 1 3 2

A random permutation vector can be generated with the function randperm:

>> randperm(8)

ans =

2 4 1 5 8 6 3 7

Sometimes we want to swap two variables. More generally, we might wish to
permute several variables in a given order. These tasks can be accomplished using
the deal function:

>> a = 1; b = 2; [a,b] = deal(b,a)

a =

2

b =

1

>> a = 1; b = 2; c = 3; [a,b,c] = deal(b,c,a)

a =

2

b =

3

c =

1

24.4. Rank-1 Matrices

A rank-1 matrix has the form A = xy∗, where x and y are both column vectors. Often
we need to deal with special rank-1 matrices where x or y is the vector of ones. For
y = ones(n,1) we can form A as an outer product as follows:

>> n = 4; x = (1:n)'; % Example choice of n and x.

>> A = x*ones(1,n)

A =

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

24.5 Set Operations 383

Recall that x(:,1) extracts the first column of x. Then x(:,[1 1]) extracts the first
column of x twice, giving an n-by-2 matrix. Extending this idea, we can form A using
only indexing operations:

A = x(:,ones(n,1))

(This operation is known to MATLAB afficionados as “Tony’s trick”.) The revised
code avoids the multiplication and is therefore faster.

Another way to construct the matrix is with repmat:

A = repmat(x,1,n);

See Section 23.5 for a discussion of how to form an even simpler rank-1 matrix.
For a practical example, consider the Cauchy matrix, which has (i, j) element

1/(xi + yj). It can be formed in two stages: by forming the matrix A with (i, j)
element xi + yj and then inverting each element. We will consider just the formation
of A, with x and y both n-by-1 vectors. The most obvious code is

A = x*ones(1,n) + ones(n,1)*y.';

As we have just seen this can alternatively be written as

A = x(:,ones(1,n)) + y(:,ones(1,n)).';

Even simpler, and used in gallery('cauchy',x,y), is to exploit implicit expansion
(described in Section 5.3.1):

A = x + y.';

For n = 10,000 we found that the third code runs several times faster than the first
two.

24.5. Set Operations

Suppose you need to find out whether any element of a vector x equals a scalar
a. This can be done using any and an equality test, taking advantage of the way
that MATLAB expands a scalar into a vector when necessary in an assignment or
comparison:

>> x = 1:5; a = 3;

>> x == a

ans =

1×5 logical array

0 0 1 0 0

>> any(x == a)

ans =

logical

1

More generally, a might itself be a vector and you need to know how many of the
elements of a occur within x. The test above will not work. One possibility is to
loop over the elements of a, carrying out the comparison any(x == a(i)). Shorter
and faster is to use the set function ismember:

384 Tricks and Tips

>> x = 1:5; a = [-1 3 5];

>> ismember(a,x)

ans =

1×3 logical array

0 1 1

>> ismember(x,a)

ans =

1×5 logical array

ans =

0 0 1 0 1

As this example shows, ismember(a,x) returns a vector with ith element 1 if a(i) is
in x and 0 otherwise. The number of elements of a that occur in x can be obtained with
sum(ismember(a,x)) or nnz(ismember(a,x)), the latter being faster as it involves
no floating-point operations.

The ismember function works with various types of arrays, not just numeric arrays.
To see the full list of MATLAB set functions type

web([docroot, '/matlab/set-operations.html'])

24.6. Subscripting Matrices as Vectors

MATLAB allows a two-dimensional array to be subscripted as though it were one
dimensional, as we saw in the example of find applied to a matrix on p. 76. If A is
m-by-n and j is a scalar then A(j) means the same as a(j), where a = A(:); in other
words, A(j) is the jth element in the vector made up of the columns of A stacked one
on top of the other.

To see how one-dimensional subscripting can be exploited suppose we wish to
assign an n-vector v to the leading diagonal of an existing n-by-n matrix A. This can
be done by

A = A - diag(diag(A)) + diag(v);

but this code is neither elegant nor efficient. We can take advantage of the fact that
the diagonal elements of A are equally spaced in the vector A(:) by writing

A(1:n+1:n^2) = v;

or

A(1:n+1:end) = v;

The main antidiagonal can be set in a similar way, by

A(n:n-1:n^2-n+1) = v;

For example,

>> A = spiral(5)

A =

21 22 23 24 25

20 7 8 9 10

24.7 Avoiding If Statements 385

19 6 1 2 11

18 5 4 3 12

17 16 15 14 13

>> A(1:6:25) = -(1:5)

A =

-1 22 23 24 25

20 -2 8 9 10

19 6 -3 2 11

18 5 4 -4 12

17 16 15 14 -5

>> A(5:4:21) = 0 % Using scalar expansion

A =

-1 22 23 24 0

20 -2 8 0 10

19 6 0 2 11

18 0 4 -4 12

0 16 15 14 -5

One use of this trick is to shift a matrix by a multiple of the identity matrix: A ←
A− αI, a common operation in numerical analysis. This is accomplished with

A(1:n+1:end) = A(1:n+1:end) - alpha

It is not always easy to work out the appropriate one-dimensional subscripts with
which to index a two-dimensional array. Suppose we wish to set to zero the (1, 2),
(1, 4), (2, 2), and (3, 1) elements of a 4-by-4 array. Using two-dimensional subscript-
ing this would require four separate assignment statements. Instead we can use the
function sub2ind to convert the subscripts from two dimensions to one:

>> A = magic(4);

>> A(sub2ind(size(A), [1 1 2 3], [2 4 2 1])) = 0

A =

16 0 3 0

5 0 10 8

0 7 6 12

4 14 15 1

The input arguments of sub2ind are the array dimensions followed by the row sub-
scripts then the column subscripts.

24.7. Avoiding If Statements

Statements involving if can sometimes be avoided by the careful use of relational
operators. Suppose we wish to code the evaluation of the function

f(x) =

{ sinx, x < 0,
x, 0 ≤ x ≤ 1,
1, 1 < x,

with x a double-precision matrix. Instead of the obvious if-elseif-else coding, we
can write

386 Tricks and Tips

y = sin(x).*(x < 0) + x.*(0 <= x & x <= 1) + (1 < x);

This evaluation exploits the fact that logical expressions evaluate componentwise to
1 (true) or 0 (false), and that MATLAB will happily perform arithmetic with logicals
(here it automatically converts them to doubles first). A possible criticism of the
evaluation is that it performs some unnecessary multiplications. The following version
is more efficient, though a little less readable. It uses one-dimensional subscripting,
as described in Section 24.6:

y = ones(size(x));

k = (x < 0); y(k) = sin(x(k));

k = (0 <= x & x < 1); y(k) = x(k);

A technique is a trick that works.

— GIAN-CARLO ROTA

A trick used three times becomes a standard technique.

— GEORGE POLYA

The MATLAB language . . .

is optimized for high-speed number crunching....

Longtime practitioners of the language develop

tricks and techniques that trade off speed of implementation,

speed of execution, elegance, and compactness.

— NED GULLEY, In Praise of Tweaking: A Wiki-like Programming Contest (2004)

Chapter 25

The Parallel Computing Toolbox

The Parallel Computing Toolbox is a toolbox that, like the Symbolic Math Toolbox,
extends the capabilities of MATLAB. Type ver to see if it is available on your system.

MATLAB already exploits multicore processors and multiple processors through
its built-in functions such as mtimes (matrix multiplication), eig, backslash, and
sort, which execute on multiple computational threads in a single MATLAB session.
The Parallel Computing Toolbox allows further, explicit exploitation of multicore
processors, particularly for coarser-grained computations, and it supports the use of
clusters (resources of connected computers) and graphics processing units (GPUs).

The purpose of parallel computing is to harness multiple computing units to obtain
results as fast as possible and to solve larger problems than can be stored on a single
unit. One measure of the success of a parallel computation is the speedup obtained
compared with carrying out the same computation on a single processor.

Parallel computing is a complicated subject, for several reasons. First, computer
architectures are continually evolving, so the techniques needed to exploit those ar-
chitectures must also evolve. Second, parallelism introduces many issues, such as
how the data is to be stored and how work can be shared across the computational
resources (load balancing). Third, depending on the nature of the computation, it
can be difficult to achieve satisfactory speed improvements by parallelization. Fourth,
writing and debugging parallel programs is inherently difficult.

The Parallel Computing Toolbox makes it relatively simple to write parallel pro-
grams in MATLAB, using just minor extensions to the language. It is necessarily more
limited than specialized parallel programming languages in the flexibility it provides.

The Parallel Computing Toolbox can be used to prototype parallel code by working
on a local machine before finally running programs on a remote cluster. The cluster
on which you run jobs must be running the MATLAB Distributed Computing Server.

In the terminology of the Parallel Computing Toolbox, the client is the MATLAB
session running on the desktop. Workers are MATLAB computational engine pro-
cesses running on a desktop computer or on a remote cluster, perhaps in the cloud.
The workers do not have a MATLAB desktop and cannot display graphics, but they
can communicate among themselves and with the client.

A set of workers forms a parallel pool. A parallel pool can be started with the
command parpool, which by default uses the pool size set in Preferences-Parallel
Computing Toolbox. There is a short delay when a parallel pool is set up, since
MATLAB has to load on each worker:

>> parpool

Starting parallel pool (parpool) using the 'local' profile ...

connected to 4 workers.

ans =

387

388 The Parallel Computing Toolbox

Pool with properties:

Connected: true

NumWorkers: 4

Cluster: local

AttachedFiles: {}

IdleTimeout: 30 minute(s) (30 minutes remaining)

SpmdEnabled: true

As well as the default local profile (your desktop machine) you may have a profile that
provides access to a remote cluster. The defaults can be overridden: the command
parpool(poolsize) uses the specified number of workers, and the two-argument form
parpool(profilename,poolsize) also specifies the profile to be used. A parallel
pool closes down after an idle time that can be set in Preferences-Parallel Computing
Toolbox (it defaults to 30 minutes in this example). The pool can be explicitly closed
as follows:

>> delete(gcp)

Parallel pool using the 'local' profile is shutting down.

With the default settings in Preferences-Parallel Computing Toolbox it is not
essential to issue a parpool command, as the parallel language constructs start up a
pool with the default pool size automatically if one does not already exist.

An icon in the bottom left corner of the MATLAB desktop has a tooltip that gives
information about the current parallel pool and, when clicked, has options to start a
parallel pool and to go to the preferences for the toolbox.

A number of MATLAB toolboxes provide support for the Parallel Computing Tool-
box in that some of their functions use the toolbox if given certain input arguments.
For example, in the Optimization Toolbox there is a setting 'UseParallel',true in
the options structure passed to the solvers.

25.1. The Parfor Loop

A parfor loop provides the simplest way to achieve parallelism with the Parallel
Computing Toolbox, as it does not require any knowledge of parallel computing.

A parfor loop has the same form as a for loop but it splits the computation
inside the loop among available workers, in an automatic way. Unlike in a for loop
the iterations are carried out in an unspecified order, so a parfor loop should only
be used when the loop iterations are completely independent.

The following code computes the values of the Lambert W function on a spiral in
the complex plane, using the function lambertw from the Symbolic Math Toolbox. It
computes the values twice: first with a for loop and again with a parfor loop:

n = 1000;

x = exp(1i*linspace(0,2*pi,n)) .* linspace(0,1e2,n);

y = ones(n,1); z = ones(n,1);

tic

for i = 1:n

y(i) = lambertw(x(i));

end

25.1 The Parfor Loop 389

toc

tic

parfor i = 1:n

z(i) = lambertw(x(i));

end

toc

p = gcp; pool_size = p.NumWorkers

rel_diff = norm(y-z,1)/norm(y,1)

The output is

Elapsed time is 10.602350 seconds.

Elapsed time is 3.649462 seconds.

pool_size =

4

rel_diff =

0

With four workers we are getting a speedup of 2.9, and exactly the same vector of
function values is computed. The speedup would be closer to 4 if the computations
within the loop were more expensive, so that the relative overheads of the paralleliza-
tion were smaller.

An ideal scenario for parfor is that we need to carry out a set of independent and
almost identical computations, such as in a Monte Carlo simulation or a parameter
sweep. The next example is of the latter type: it computes the error of the integral

function applied to a parametrized function with known integral, for a range of values
of the parameter:

n = 1024;

q = zeros(n,1);

exact = zeros(n,1);

lams = linspace(1,2,n);

parfor i=1:n

lambda = lams(i);

f = @(x) 0.1 ./ ((x-lambda).^2 + 0.01);

q(i) = integral(f,1,2);

exact(i) = atan(10*(2-lambda)) - atan(10*(1-lambda));

end

semilogy(lams, abs(q-exact));

xlabel('\lambda','VerticalAlignment','top')

ylabel('Error','Rotation',0)

axis tight

The resulting plot is shown in Figure 25.1. The rough curve is typical of adaptive
integrators. With four workers the speedup is 2.1 over the same code with parfor

replaced by for.
A parfor loop must adhere to a number of restrictions for the loop to be valid.

1. The loop variable must increase in steps of 1. Examples:

390 The Parallel Computing Toolbox

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

λ

10
-15

10
-14

10
-13

Error

Figure 25.1. Error for integral function, for integral
∫ 2

1
0.1/((x− λ)2 + 0.01) dx

depending on λ.

parfor k = -2:10 % Allowed.

parfor k = 0:10:100 % Not allowed.

This limitation can be overcome by putting the desired values of the variable in
a vector, kvals say, then writing parfor i = 1:length(k), k = kvals(i)

2. There must be no data dependencies between different iterations. Examples:

n = 10; s = ones(n,1);

parfor i=2:10, s(i) = i^2; end % Allowed.

parfor i=2:10, s(i) = s(i-1)^2 + i^2; end % Not Allowed.

In the third line the iterations cannot be carried out in an arbitrary order, as
is necessary for parfor to be applicable.

3. The body of a parfor loop cannot contain another parfor loop, but it can
contain a call to a function that contains a parfor loop.

The second limitation is quite restricting. However, reduction assignments, which
accumulate quantities across loop iterations, are allowed, as in the next example.

We now check the approximation ρ(An) ≈
√
n [51] to the spectral radius ρ(A)

(defined on p. 321). We compute the average spectral radius over 25 random matrices
for four different values of n, then print a vector of ratios that should be close to 1:

nvals = [125 250 500 1000];

nlen = length(nvals);

m = 25;

% Version 1. Serial.

25.1 The Parfor Loop 391

tic

e = zeros(nlen,1);

for i = 1:nlen

s = 0;

for j = 1:m

s = s + max(abs(eig(randn(nvals(i)))));

end

e(i) = s/m;

end

ratio = e'./sqrt(nvals)

toc

% Version 2. Parallel.

tic

e = zeros(nlen,1);

parfor i = 1:nlen

s = 0;

for j = 1:m

s = s + max(abs(eig(randn(nvals(i)))));

end

e(i) = s/m;

end

ratio = e'./sqrt(nvals)

toc

The second version of the code uses parfor to parallelize the computations. The
output is

ratio =

1.0504e+00 1.0406e+00 1.0304e+00 1.0226e+00

Elapsed time is 21.192798 seconds.

ratio =

1.0403e+00 1.0415e+00 1.0319e+00 1.0253e+00

Elapsed time is 20.694409 seconds.

The speedup, with four workers, is very modest. However, we can do better. The
parfor loop is over the values of n, and so the computations will not be evenly split
up amongst the workers: one will receive the n = 125 computations and another the
n = 1000 computations. A natural improvement is to switch the order of the loops,
so that the our loop is parfor j = 1:m. However, we can do even better by collapsing
the two loops into one parfor, as is done in Listing 25.1. Within the parfor we
reconstruct the old i loop index from the new k loop index (the j loop index can be
reconstructed as well, but it is not needed in this example). The advantage of this
transformation is that we now have a loop with a much greater number of iterations,
which allows for a more even spread of computation among the workers. We have
expressed this version as a function as we will use it again later in the chapter.
Running the function with

nvals = [125 250 500 1000];

nlen = length(nvals);

m = 25;

392 The Parallel Computing Toolbox

Listing 25.1. Function specrad randn.

function ratio = specrad_randn(m,nvals)

%SPECRAD_RANDN Spectral radius of randn matrices.

% ratio = specrad_randn(m,nvals) computes ratios of expected versus

% actual mean spectral radius of m randn matrices of dimensions

% given in nvals.

nlen = length(nvals);

s = zeros(nlen*m,1);

parfor k = 1:nlen*m

i = ceil(k/m); % And, although not needed, j = k - m*(i-1);

s(k) = max(abs(eig(randn(nvals(i)))));

end

t = reshape(s,m,nlen);

ratio = sum(t) ./ (m*sqrt(nvals(:)'));

tic

ratio = specrad_randn(m,nvals)

toc

gives

ratio =

1.0407e+00 1.0403e+00 1.0297e+00 1.0240e+00

Elapsed time is 9.990371 seconds.

A reduction in time by about a factor 2 has been achieved. By comparison, simply
reordering the loops gives a slightly greater run time of 10.76 seconds.

In this example we did not initialize the random number generator, in order to
keep the code short. For parallel code it is not sufficient to use a single rng state-
ment. Several lines of code are needed: search for parfor random in the MATLAB
documentation.

Unlike the other parallel constructs, parfor is a command in core MATLAB. If
the Parallel Computing Toolbox is not present (or automatic creation of a parallel
pool is turned off) then parfor executes a standard for loop but in an unspecified
order.

25.2. Asynchronous Computing with Parfeval

The parfeval function allows you to execute a function on one or more parallel pool
workers without waiting for all the computations to complete. This is convenient if
the computation has a target that may be reached early or if analysis or plotting
of intermediate results is required. The parfeval function therefore contrasts with
parfor, which runs until the loop is complete.

The syntax is

f = parfeval(fun,numout,in1,in2,...)

25.3 Batch Computations 393

which requests asynchronous execution of the function fun on a worker contained in
the current parallel pool, where fun returns numout output arguments and expects
input arguments in1, in2, The returned f is an FevalFuture object, from which
the results can be obtained when the worker has completed evaluating fun. A call to
fetchNext of the form

[idx,B1,B2,...] = fetchNext(f)

waits for an unread FevalFuture in the array of futures f to finish and then returns
the linear index idx of that future in f along with the future’s results in B1, B2,

Suppose we wish to implement a search for which the number of steps required is
not known in advance. Perhaps the most obvious approach is to set up a loop with
N calls to parfeval and then to execute another loop with N calls to fetchNext that
waits for the results, repeating this process as necessary. A more effective way to
employ parallelism is illustrated by the function parfeval specrad in Listing 25.2.
Here, an initial N calls to parfeval are issued, then repeatedly N further calls are
issued and N results collected. When an iteration of the while loop finishes, the
workers are still working while the client generates the next N tasks. Therefore there
are always between 0 and 2N tasks in progress at any one time, and usually at least
N. The advantage of parfeval specrad over the simple loop analogue can be clearly
seen by considering what happens as the cost of make_searches tends to infinity.

Function parfeval specrad searches for a randn(n) matrix whose spectral radius
is at least 1.75

√
n. As soon as such a matrix is found the tasks are terminated. Here

is the (truncated) output from one run:

>> n = 100; c = 1.2; [A,specrad,index] = parfeval_specrad(n,c);

Iteration: 1, index = 3

Iteration: 1, index = 5

Iteration: 1, index = 6

Iteration: 1, index = 7

Iteration: 1, index = 2

Iteration: 1, index = 4

Iteration: 1, index = 8

Iteration: 1, index = 1

Iteration: 1, index = 9

Iteration: 1, index = 10

...

Iteration: 4, index = 91

Iteration: 4, index = 92

Iteration: 4, index = 93

>> specrad/(c*sqrt(n))

ans =

1.0138e+00

The function parfevalOnAll is similar to parfeval but it requests the asyn-
chronous execution of the specified function on all the workers in the parallel pool.

25.3. Batch Computations

When the parfor loops in the previous section are running, the command line is
blocked until the computation is complete. The batch command allows a computation

394 The Parallel Computing Toolbox

Listing 25.2. Function parfeval specrad.

function [A,specrad,index] = parfeval_specrad(n,c)

%PARFEVAL_SPECRAD Find random matrix with large spectral radius.

% [A, specrad] = PARFEVAL_SPECRAD(n,c) searches for a randn(n)

% matrix with spectral radius at least c*sqrt(n).

% Adapted from a code by Jos Martin.

N = 25; % Number of searches to launch at a time.

specrad_target = sqrt(n)*c;

% Launch initial N searches for the pool to work on.

f = make_searches; k = 1;

while 1

% Add N more searches to the pool's list of tasks.

f = [f make_searches];

% Logical array to track the completed searches.

complete = false(size(f));

% Wait for any N of the 2*N searches to complete.

for j = 1:N

[index,found,specrad,A] = fetchNext(f);

fprintf('Iteration: %d, index = %d\n',k,index);

if found

% Target met, so cancel the other searches and return.

cancel(f), return

end

% Mark this particular search as complete, for removal below.

complete(index) = true;

end

% Remove completed searches, to minimize length of f.

f = f(~complete);

k = k +1;

end

function f = make_searches

%MAKE_SEARCHES Create block of N searches (nested function).

for i = N:-1:1 % Reverse loop, so no need to allocate f.

f(i) = parfeval(@search,3,specrad_target,n);

end

end

end

function [found,specrad,A] = search(specrad_target,n)

%SEARCH Generate random matrix and check spectral radius.

A = randn(n);

specrad = max(abs(eig(A)));

found = (specrad >= specrad_target);

end

25.4 Single Program, Multiple Data 395

to be carried out in the background, so that further work can be done in the Command
Window. Batch jobs are particularly attractive when the computations are done on
a remote cluster. Indeed, in this case the client can even be shut down and the job
will continue to run.

Consider the next script. If a parallel pool is open it should be closed before
running this script:

clust = parcluster('local');

N = 4;

job = batch(clust,@specrad_randn, 1, {25, [125 250 500 1000]}, ...

'Pool', N-1); % Submit batch job.

wait(job,'finished')

ratios = fetchOutputs(job); % Retrieve results.

delete(job)

The parcluster command sets up a cluster, in this case using the local profile.
The second input argument of batch is the function to run (specrad randn in List-
ing 25.1), the third is the number of output arguments of that function, and the
fourth is a cell array containing the input arguments to be passed to the function. We
have to specify the number of workers, which must be at least one less than the total
number of workers, since one worker is required to run the batch. When we invoke the
script in the Command Window the prompt reappears and we can carry on working
while the computations are performed. Our sample script uses the wait command
to wait until the batch computations are finished and then it uses fetchOutputs to
retrieve the results, displays them, and closes down the job. Alternatively, the state
of a job with handle job can be checked periodically using get(job,'State').

The Job Monitor, available from the menu selection Parallel-Monitor Jobs on the
Home tab, displays the status of all open jobs for the selected cluster profile.

25.4. Single Program, Multiple Data

The single program, multiple data (SPMD) paradigm allows the same code to be run
on multiple workers with each worker using different data, which might for example
be different parts of the same array.

A general form of the spmd command is

spmd (n)

statements
end

The code within the spmd construct is executed in parallel by n workers in the parallel
pool, where n must not exceed the size of the pool. If n is omitted then all the workers
are used.

Unlike with parfor, where a loop is split up among workers automatically, the
spmd command allows the computations of individual workers to be explicitly speci-
fied, since each worker is identified by a unique labindex value.

Consider the script

f1 = @(x)cos(x.^2);

f2 = @(x)sin(x.^2);

f3 = @(x)tan(x.^2);

396 The Parallel Computing Toolbox

spmd

switch labindex

case 1, f = integral(f1,0,1);

case 2, f = integral(f2,0,1);

case 3, f = integral(f3,0,1);

end

end

f{1:3} % Display results from composite variable.

The script evaluates three different integrals in parallel, assuming that at least three
workers are available. As with the parfor command, if a parallel pool is not already
running then spmd will set one up. We defined the functions outside the body of
the spmd statement, as it is a limitation of the Parallel Computing Toolbox that
anonymous functions cannot be defined within an spmd body. We retrieve the results
back from the workers using the composite object f, which is accessed like a cell array,
with one element per worker. The output is

ans =

9.0452e-01

ans =

3.1027e-01

ans =

3.9841e-01

A composite object, with one element per worker, can be created with an assign-
ment of the form

X = Composite()

When the elements of a composite object are set on the client they are immediately
transferred to the appropriate workers. The next script computes the largest and
smallest singular values of three matrices:

parpool(3);

X = Composite();

X{1} = hilb(100);

X{2} = pascal(100);

X{3} = magic(100);

spmd(3)

s = svd(X);

svals_extreme = [s(1) s(end)];

end

svals_extreme{1:3}

and the output is

ans =

2.1827e+00 6.5355e-20

ans =

3.0318e+58 5.2848e-02

ans =

5.0005e+05 1.4304e-13

25.5 Distributed and Codistributed Arrays 397

The differences between parfor and spmd are important to note.

• parfor divides a loop into smaller pieces automatically and requires no user
input.

• spmd divides data into small pieces, but this must be explicitly programmed
by the user. spmd allows dependencies between the tasks of different workers
and communication between the workers (neither is illustrated in the simple
examples above).

25.5. Distributed and Codistributed Arrays

A distributed array is created on the client but stored on the workers, partitioned
among them. A codistributed array is created on the workers and partitioned among
them. A distributed two-dimensional array is partitioned as evenly as possible by
column. By contrast, the user has full control over how a codistributed array is
partitioned. The advantage of a (co)distributed array is that different workers can
work on different parts of the array in parallel.

In the following example we transform a random matrix by a matrix multiplication
and some componentwise operations in three different ways, on a parallel pool with
six workers. For this computation we started MATLAB with the command line option
-singleCompThread, which limits MATLAB to a single computational thread and so
gives a more dramatic illustration of the benefits of parallelism:

n = 5000;

% 1. Serial code.

tic

A = randn(n);

X = log((A*A+eye(n)).^(1/2));

toc

% 2. With distributed array.

tic

A = randn(n,'distributed');

X = log((A*A+eye(n,'like',A)).^(1/2));

toc

% 3. With codistributed array.

tic

spmd

A = randn(n,'codistributed');

X = log((A*A+eye(n)).^(1/2));

end

toc

The 'like',A arguments in the eye statement ensure that the identity matrix is
generated on the workers and not on the host; see the next section for more about
'like'. The output is

398 The Parallel Computing Toolbox

Elapsed time is 25.328439 seconds.

Elapsed time is 6.505735 seconds.

Elapsed time is 5.840922 seconds.

In both the second and third computations the array A is created on the workers, and
it is a little faster to generate it within the spmd statement.

If we delete the semicolon at the end of the first line inside the body of the spmd

then we obtain insight into how the data is stored:

Lab 1:

This worker stores A(:,1:834).

LocalPart: [5000×834 double]

Codistributor: [1×1 codistributor1d]

Lab 2:

This worker stores A(:,835:1668).

LocalPart: [5000×834 double]

Codistributor: [1×1 codistributor1d]

Lab 3:

This worker stores A(:,1669:2501).

LocalPart: [5000×833 double]

Codistributor: [1×1 codistributor1d]

Lab 4:

This worker stores A(:,2502:3334).

LocalPart: [5000×833 double]

Codistributor: [1×1 codistributor1d]

Lab 5:

This worker stores A(:,3335:4167).

LocalPart: [5000×833 double]

Codistributor: [1×1 codistributor1d]

Lab 6:

This worker stores A(:,4168:5000).

LocalPart: [5000×833 double]

Codistributor: [1×1 codistributor1d]

We see that A has been split into blocks of about 834 ≈ 5000/6 columns among the
six workers.

25.6. GPU Computing

The Parallel Computing Toolbox supports GPU (graphics processing unit) computing
on CUDA-enabled NVIDIA GPUs. Computations can potentially run faster on a
GPU than on a CPU (central processing unit).

To determine if your machine has a suitable GPU, type gpuDevice. If a suitable
GPU is found a handle is returned containing a list of properties of the GPU; otherwise
an error message is produced:

>> gpuDevice

ans =

CUDADevice with properties:

25.6 GPU Computing 399

Name: 'GeForce GTX 960M'

Index: 1

ComputeCapability: '5.0'

SupportsDouble: 1

DriverVersion: 7.5000

ToolkitVersion: 7

MaxThreadsPerBlock: 1024

MaxShmemPerBlock: 49152

MaxThreadBlockSize: [1024 1024 64]

MaxGridSize: [2.1475e+09 65535 65535]

SIMDWidth: 32

TotalMemory: 2.1474e+09

AvailableMemory: 1.2342e+09

MultiprocessorCount: 5

ClockRateKHz: 1097500

ComputeMode: 'Default'

GPUOverlapsTransfers: 1

KernelExecutionTimeout: 1

CanMapHostMemory: 1

DeviceSupported: 1

DeviceSelected: 1

The function gpuDeviceCount returns the number of suitable GPUs present, and so
can be used to test for the presence of a GPU without generating an error.

In order to carry out computations on the GPU, data must first be stored on it.
This can be done in two ways: by transferring a numeric array from the CPU or, more
efficiently, by generating the array directly on the GPU. An array is transferred to the
GPU with the gpuArray function, which constructs an object of the gpuArray class.
Functions such as eye, ones, rand, and randn can have an argument 'gpuArray'

appended in order to generate the array directly on the GPU. An array is transferred
back to the CPU with the gather function:

>> A = gallery('randcorr',100); % Generate on the CPU.

>> E = gpuArray(A); % Transfer to the GPU.

>> F = eye(100,'gpuArray'); % Generate on the GPU.

>> G = ones(100,'int64','gpuArray'); % Generate on the GPU.

>> B = gather(E); C = gather(F);

>> whos

Name Size Bytes Class Attributes

A 100×100 80000 double

B 100×100 80000 double

C 100×100 80000 double

E 100×100 108 gpuArray

F 100×100 108 gpuArray

G 100×100 108 gpuArray

ans 1×1 112 parallel.gpu.CUDADevice

You can test whether an array A exists on the GPU with existsOnGPU(A). This
may be necessary because if the GPU is reset and its memory cleared, with reset(h)

400 The Parallel Computing Toolbox

where h is its handle, any variables on it will still show as existing in the MATLAB
workspace until they are cleared.

A list of methods that operate on the gpuArray class can be obtained with the
command methods('gpuArray'). It includes elementary functions (exp, cos, abs,
acosh, . . .), matrix functions (lu, eig, svd, mldivide, gmres, expm, . . .), and nu-
merical functions (fft, interp1, polyfit, . . .). Help on the GPU versions of these
functions is obtained with, for example, help gpuArray/svd.

Random numbers generated on the GPU are different from those generated on the
CPU. For details see doc control random number streams.

Unlike on the CPU, complex arithmetic is not automatically used as necessary on
the GPU. If complex arithmetic might be needed, the input must be explicitly set to
be complex:

>> sqrt(gpuArray(-1))

Error using gpuArray/sqrt

SQRT: needs to return a complex result, but this is not supported

for real input X on the GPU. Use SQRT(COMPLEX(X)) instead.

>> acosh(gpuArray(-4))

Error using gpuArray/acosh

ACOSH: needs to return a complex result, but this is not supported

for real input X on the GPU. Use ACOSH(COMPLEX(X)) instead.

>> sqrt(gpuArray(complex(-1)))

ans =

0.0000 + 1.0000i

>> acosh(gpuArray(complex(-4)))

ans =

2.0634 + 3.1416i

Once data is on the GPU we can apply appropriate built-in MATLAB functions
(from the list of methods above).

The functions zeros, ones, eye, rand, and randn, and a number of others, have
a 'like' option, illustrated by

X = randn(size(B),'like',B);

This statement returns an array of normally distributed random numbers of the same
size, type, and storage location as the existing array B. This usage is convenient
when you are writing code that you may wish to run on the CPU or the GPU; after
initializing an array on the CPU or GPU, subsequent calls to randn, etc., can reference
its type so that arrays are created on the CPU or GPU as appropriate.

GPU computations can be timed with the gputimeit function, which is analogous
to the timeit function discussed in Section 23.1.

Two important points need to be made concerning the efficiency of GPU computa-
tions. First, it is important to write vectorized code whenever possible. Second, GPUs
are typically much more efficient at single-precision arithmetic than double-precision
arithmetic, so single precision should be used as long as it is accurate enough for the
task at hand.

25.7 On Things Not Treated 401

25.7. On Things Not Treated

A function pmode starts up a Parallel Command Window that displays a pmode
prompt (P>>). It allows interactive computations in SPMD form and displays output
from each worker in a separate subwindow.

This chapter has only scratched the surface of the Parallel Computing Toolbox.
It has given only trivial examples of its use, because serious examples would be much
longer and harder to read. For one source of more realistic examples type

dir([matlabroot,'/toolbox/distcomp/examples/benchmark/hpcchallenge'])

You will see a number of functions that implement benchmarks from the HPC Chal-
lenge benchmark suite—in particular the HPL benchmark for solving a linear system
Ax = b.

For further details of the Parallel Computing Toolbox consult the documentation
as well as the video tutorials on the website of The MathWorks.

Programmability for us will always trump performance.

— GAURAV SHARMA and JOS MARTIN,

MATLAB®: A Language for Parallel Computing (2009)

Choosing which form of parallelism to use can be complicated.

— CLEVE B. MOLER,

Parallel MATLAB: Multiple Processors and Multiple Cores (2007)

Chapter 26

Case Studies

26.1. Introduction

To supplement the short bursts of MATLAB code that appear throughout the book,
we now give some larger, more realistic examples. Their purpose is to demonstrate
MATLAB in use on nontrivial problems and to illustrate good programming practice.
We focus on problems that are

1. easy to explain in words,

2. easy to set up mathematically,

3. suited to graphical display, and

4. solvable with around one page or less of MATLAB code.

For each case study, after summarizing the problem we list the relevant code and
give a walk-through that points out notable techniques and MATLAB functions. The
walk-throughs are not intended to explain the codes line by line. For further details
on MATLAB functions used in this chapter consult the index and the MATLAB
documentation.

26.2. Brachistochrone

Suppose a particle slides down a frictionless wire. If we fix the endpoints, what shape
of wire minimizes the travel time? This problem dates back to the times of Johann
Bernoulli (1667–1748) and its solution involves a curve known as the brachistochrone.
The name comes from the Greek “brachistos” (shortest) and “chronos” (time).

For this problem it is traditional to use “upside-down” coordinates so that the
x-axis points in a horizontal direction but the y-axis points vertically downward.
Suppose the wire starts at the origin, (0, 0), and ends at (bx, by). If we let y(x) denote
the curve followed by the wire, then the particle’s sliding time takes the form

T =

∫ bx

0

√
1 + (dy/dx)2

2g y(x)
dx,

where g is the constant of acceleration due to gravity. Minimizing T over an appro-
priate class of functions y(x) produces the brachistochrone, which may be defined in
terms of the parameter θ and a constant R by

x(θ) = R(θ − sin θ), y(θ) = R(1− cos θ).

403

404 Case Studies

The curve must finish at (bx, by) so we require 0 ≤ θ ≤ θ?, where bx = R(θ? − sin θ?)
and by = R(1− cos θ?). Eliminating R, we find θ? by solving

byθ
? − by sin θ? + bx cos θ? − bx = 0, (26.1)

and then we set R = by/(1− cos θ?).
Now we consider a wire formed from straight-line segments. More precisely, divide

the x interval [0, bx] into N equally spaced subintervals [xk−1, xk] with xk = k∆x and
∆x = bx/N , and let yk denote y(xk). Imagine that the wire is produced by joining
the yk heights with straight lines. Since y0 = 0 and yN = by, our join-the-dots curve
is completely determined by specifying the heights {yk}N−1k=1 at the internal points.
For any such curve it may be shown that the particle’s slide time is given by

T =
N∑
k=1

2
√
∆x2 + (yk − yk−1)2√
2gyk +

√
2gyk−1

. (26.2)

For fixed bx, by, and N , our task is to find the straight-line segments that min-
imize the slide time. This is an optimization problem; we wish to minimize T =
T (y1, y2, . . . , yN−1) in (26.2), with y0 = 0 and yN = by, over all possible {yk}N−1k=1 .
It is then of interest to see how well the resulting curve approximates the brachis-
tochrone. More details about the brachistochrone problem may be found, for exam-
ple, at http://mathworld.wolfram.com/BrachistochroneProblem.html. The idea
of optimizing over piecewise linear wires is taken from [116].

Code and Walk-through

The function brach in Listing 26.1 compares a number of exact and join-the-dots
brachistochrones, as shown in Figure 26.1. The nested function Btime computes the
piecewise linear slide time T in (26.2), and the anonymous function tzero returns
the left-hand side of (26.1). We set bx = 1 and use ten by-values equally spaced
between 0.2 and 2 and two N -values, 4 and 8. In each case the initial guess yinit

that we pass to fminsearch represents the straight line from (0, 0) to (bx, by). After
using fminsearch to find the optimal curve, we plot -[0 y by], rather than [0 y

by], to account for the upside-down coordinate system. The true brachistochrone is
computed via fzero. The N = 4 and N = 8 cases are plotted in the subplot(1,2,1)

and subplot(1,2,2) regions, respectively.

26.3. Small-World Networks

As discussed in Chapter 21, an undirected network, or graph, is defined by a list of
nodes and a list of edges connecting pairs of nodes. A network of N nodes may be
stored in a symmetric N -by-N adjacency matrix A, with aij = 1 if nodes i and j have
an edge between them, and aij = 0 otherwise. In the case where A represents a social
network, for example, the nodes are people and the edges represent acquaintanceships:
aij = aji = 1 if persons i and j know each other. The pathlength between nodes i
and j is the minimum number of edges that must be crossed in order to get from i
to j.

A sparse network may be said to have small-world characteristics if

(a) it is highly clustered—if i knows j and j knows k, then, with high frequency, i
knows k—and

26.3 Small-World Networks 405

Listing 26.1. Function brach.

function brach

%BRACH Brachistochrone illustration.

% Computes and plots approximate brachistochrone by optimization,

% using fminsearch, and exact brachistochrone, using fzero.

bx = 1; g = 9.81;

byvals = linspace(0.2,2,10);

Nvals = [4 8];

for i = 1:2

N = Nvals(i);

subplot(1,2,i)

for k = 1:length(byvals)

% Approximate brachistochrone.

by = byvals(k);

dy = by/N; dx = bx/N;

yinit = [dy:dy:by-dy];

y = fminsearch(@Btime,yinit);

plot([0:dx:bx],-[0 y by],'ro-')

hold on

% True brachistochrone.

tzero = @(theta)(by*theta - by*sin(theta) + bx*cos(theta) - bx);

tstar = fzero(tzero,pi);

R = by/(1-cos(tstar));

thetavals = linspace(0,tstar,100);

xcoord = R*(thetavals-sin(thetavals));

ycoord = R*(1-cos(thetavals));

plot(xcoord,-ycoord,'b--','Linewidth',2)

end

title(sprintf('N = %1.0f',N),'FontWeight','normal','FontSize',12)

xlim([0,bx]), axis off

end

hold off

function T = Btime(y)

%BTIME Travel time for a particle.

% Piecewise linear path with equispaced y between (0,0) and (bx,by).

yvals = [0 y by]; % End points do not vary.

N = length(y)+1; d = bx/N;

T = sum(2*sqrt(d^2 + (diff(yvals)).^2)./(sqrt(2*g*yvals(2:end)) + ...

sqrt(2*g*yvals(1:end-1))));

end

end

406 Case Studies

N = 4 N = 8

Figure 26.1. Output from brach.

(b) it has a small average pathlength.

Watts and Strogatz [180] coined the phrase small-world network and found several
real-life examples. They also showed that randomly rewiring a regular lattice is a
mechanism for creating a small world. Here, we will focus on property (b), the
average pathlength, for a variation of the Watts–Strogatz model in the spirit of [135]
that uses shortcuts rather than rewiring.

We begin with a k-nearest-neighbor ring network. Arranging the N nodes like the
hours on a clock, we set aij = 1 if j can be reached by moving at most k steps away
from i, either clockwise or counterclockwise. In the case N = 7, k = 2, the adjacency
matrix is

0 1 1 0 0 1 1
1 0 1 1 0 0 1
1 1 0 1 1 0 0
0 1 1 0 1 1 0
0 0 1 1 0 1 1
1 0 0 1 1 0 1
1 1 0 0 1 1 0

.

In general, A could be defined by the MATLAB commands

r = zeros(1,N); r(2:k+1) = 1; r(N-k+1:N) = 1;

A = toeplitz(r);

Now we superimpose random shortcuts on the network; that is, we add nonzeros
to the matrix at random locations, according to the following process. We look at N

26.3 Small-World Networks 407

0 20 40

nz = 320

0

10

20

30

40

Ring Network, N = 40, k = 4

0 20 40

nz = 344

0

10

20

30

40

Add shortcuts: N*p = 10

10
-2

10
-1

10
0

10
1

10
2

Shortcuts

2

4

6

8

10

P
a
th

le
n
g
th

N = 150, k = 4

Figure 26.2. Output from the small-world simulations of small world. Upper: adja-
cency matrices. Lower: pathlength decay.

flips of a biased coin that lands heads with probability p. If the ith flip shows heads
then we choose a column 1 ≤ j ≤ N uniformly and set aij = aji = 1. (In other words,
we add a new link—a shortcut—from the ith node to a randomly chosen jth node.)
On average, the overall number of shortcuts that we create is Np.

Generating shortcuts in this way makes it easier to get around the network, and
hence decreases the average pathlength. Our aim is to investigate, for fixed N and
k, how sharply the average pathlength decays as the average number of shortcuts is
increased.

For computational purposes, we may use the characterization that, for r > 1, the
pathlength between nodes i and j is r if and only if (Ar)ij > 0 and (Ak)ij = 0 for all
0 < k ≤ r− 1. Hence, we can find all pathlengths by raising the adjacency matrix to
increasingly higher powers, until no zeros remain. For each pair of nodes, i and j, we
must record the power at which the (i, j) element first becomes nonzero.

Code and Walk-through

The script small world in Listing 26.2 produces Figure 26.2. The upper left spy

plot shows the adjacency matrix for a four-nearest-neighbor ring of 40 nodes. In the
upper right picture, we see an instance of the same network with shortcuts added,
using Np = 10. The lower picture gives the results of a large-scale computation.
Here, we show the average pathlength of a 150-node, four-nearest-neighbor ring as a
function of the average number of shortcuts, Np.

The first part of the code sets up an adjacency matrix for the ring using toeplitz.
We then generate shortcuts with the sparse facility. The line v = find(rand(N,1)<p);
simulates the coin flips. Then

408 Case Studies

Listing 26.2. Script small world.

%SMALL_WORLD Small-world network example.

% Display ring and small-world adjacency matrices.

% Then compute average pathlengths.

rng(100), options = {'FontSize',10,'FontWeight','normal'};

N = 40; k = 4; short_ave = 10; p = short_ave/N;

r = zeros(1,N); r(2:k+1) = 1; r(N-k+1:N) = 1;

A = toeplitz(r);

subplot(2,2,1), spy(A)

title(sprintf('Ring Network, N = %2.0f, k = %2.0f',N, k),options{:})

subplot(2,2,2)

v = find(rand(N,1)<p);

Ashort = sparse(v,ceil(N*rand(size(v))),ones(size(v)),N,N);

spy(A+Ashort+Ashort')

title(sprintf('Add shortcuts: N*p = %2.0f',N*p),options{:})

h = waitbar(0,'Computing average pathlengths');

%%%%%% Average pathlength as a function of N*p %%%%%

N = 150; k = 4; M = 20; Smax = 150; Np = logspace(-2,2,M);

r = zeros(1,N); r(2:k+1) = 1; r(N-k+1:N) = 1;

B = toeplitz(r);

lmean = zeros(M,1);

for i = 1:M

waitbar(i/M)

p = Np(i)/N;

smean = zeros(Smax,1);

for s = 1:Smax

v = find(rand(N,1)<p);

Bshort = sparse(v,ceil(N*rand(size(v))),ones(size(v)),N,N);

Bnetwork = B + Bshort + Bshort' + eye(N); % Full array.

L = sign(Bnetwork); % Convert to matrix of 0s and 1s.

power = 1;

Bnew = Bnetwork;

while any(any(Bnew==0))

power = power + 1;

Bold = Bnew;

Bnew = Bnew*Bnetwork;

L = L + ((L == 0) & (Bnew > 0))*power;

end

smean(s) = mean(mean(L-diag(diag(L))))*N/(N-1);

end

lmean(i) = mean(smean);

end

close(h)

subplot(2,2,3:4), semilogx(Np,lmean,'ro')

xlabel('Shortcuts'), ylabel('Pathlength')

title(sprintf('N = %2.0f, k = %2.0f',N, k),options{:})

26.4 Performance Profiles 409

Ashort = sparse(v,ceil(N*rand(size(v))),ones(size(v)),N,N);

finds a column index for each successful row index and inserts the appropriate edges.
Because an edge from i to j automatically implies an edge from j to i, we apply spy

to A+Ashort+Ashort'. The shortcut matrix in this case is

>> Ashort

Ashort =

(12,1) 1

(13,9) 1

(18,11) 1

(25,12) 1

(35,15) 1

(14,22) 1

(9,24) 1

(38,24) 1

(6,26) 1

(5,30) 1

(15,31) 1

(27,35) 1

(33,36) 1

(30,40) 1

We see that 14 shortcuts have been added. Two of these, at (13,9) and (33,36),
will have no effect on the pathlengths, as they repeat existing edges.

The second part of the script performs the big simulation. The outer loop, for i
= 1:M, runs over the Np-values, and the inner loop, for s = 1:Smax, drives a Monte
Carlo simulation—for each Np-value, we approximate the average pathlength over all
networks by the computed average over Smax networks. Although, for convenience,
the shortcuts are created with the sparse function, we compute with a full matrix
Bnew because we know that it will eventually fill in completely.

We include the identity matrix in the assignment

Bnetwork = B + Bshort + Bshort' + eye(N); % Full array.

to make the diagonal nonzero. This allows any(any(Bnew==0)) to be used as the
termination criterion for the while loop. The line L = sign(Bnetwork); ensures
that any multiply assigned edges are only counted once. The while loop pow-
ers up the adjacency matrix until it is full of nonzeros. If the (i, j) element first
becomes nonzero at level power, then we enter this value in L(i,j). On leaving
the while loop, we compute the average over the off-diagonal entries of L using
mean(mean(L-diag(diag(L))))*N/(N-1). The resulting plot shows that the path-
length starts to drop significantly when an average of O(1) shortcuts are added to
the O(N) network. Upping the network size to N = 1000, which of course increases
the runtime, produces results that agree qualitatively with the related computations
in [180].

26.4. Performance Profiles

A common task in scientific computing is to compare several competing methods on
a set of test problems. Assuming a scalar measure of performance has been chosen

410 Case Studies

(typically speed or accuracy), how best to present the results from the tests is a
nontrivial question. Some natural approaches have drawbacks. Plotting the average
performance of the methods tends to make difficult problems dominate the results,
and it is unclear how to handle problems that a method failed to solve. Ranking the
solvers, by plotting the number of times a solver came in kth place, for k from 1 to the
number of solvers, provides no information on the size of the improvement between
one place and the next.

A way of presenting results called a performance profile overcomes these disadvan-
tages. This technique, introduced by Dolan and Moré [35], is not to be confused with
an older technique of the same name that has been applied mainly in the context of
numerical integration [117].

Suppose we have a set P of m test problems and a set S of n solvers (we use the
term “solver” instead of “method” to emphasize that we are considering a particular
implementation in software of a method). Let ts(p) measure the performance of
solver s ∈ S on problem p ∈ P , where the smaller the value of ts(p) the better the
performance. Typically, ts(p) is the runtime, the flop count, the reciprocal of the flop
rate, or a measure of accuracy or stability. Define the performance ratio

rp,s :=
ts(p)

min{ tσ(p) : σ ∈ S }
≥ 1,

which is the performance of solver s on problem p divided by the best performance
of all the solvers on this problem. The performance profile of solver s is the function

φs(θ) =
1

m
× number of p ∈ P such that rp,s ≤ θ,

which is monotonically increasing. In words, φs(θ) is the probability that the perfor-
mance of solver s is within a factor θ of the best performance over all solvers on the
given set of test problems. Technically, φs(θ) is the (cumulative) distribution function
for the performance ratio of solver s.

The formulas above reduce to simple array arithmetic. Let the performance data
be an m-by-n array A, where aij is the performance of solver j on problem i. Then

φj(θ) =
1

m
× number of i among 1:m such that aij ≤ θmin{ aik : k = 1: n }. (26.3)

To view the performance profiles we simply plot φj(θ) against θ for all solvers j.

Code and Walk-through

Function perfprof in Listing 26.3 computes and plots performance profiles. This
function could be written in several ways. The shortest approach would be to make
use of the MATLAB function stairs, but it is more instructive to code the necessary
computations directly, as we have done here.

Note first that φj(θ) is a piecewise constant function whose possible values are 0,
1/m, 2/m, . . . , 1, and whose value changes when θ = aij/min{ aik : k = 1: n } for
some i. We will exploit the latter property but not the former.

To understand the code, consider the jth solver and a given scalar θk. We need
to compute φj(θk), which is m−1 times the number of i for which coli ≤ θk, where

26.4 Performance Profiles 411

Listing 26.3. Function perfprof.

function [th_max,h] = perfprof(A,th_max)

%PERFPROF Performance profile.

% [th_max, h] = PERFPROF(A,th_max) produces a

% peformance profile for the data in the M-by-N matrix A,

% where A(i,j) > 0 measures the performance of the j'th solver

% on the i'th problem, with smaller values of A(i,j) denoting

% "better". For each solver theta is plotted against the

% probability that the solver is within a factor theta of

% the best solver over all problems, for theta on the interval

% [1, th_max].

% Set A(i,j) = NaN if solver j failed to solve problem i.

% TH_MAX defaults to the smallest value of theta for which

% all probabilities are 1 (modulo any NaN entries of A).

% h is a vector of handles to the lines with h(j)

% corresponding to the j'th solver.

minA = min(A,[],2);

if nargin < 2, th_max = max(max(A,[],2)./minA); end

tol = sqrt(eps); % Tolerance.

[m,n] = size(A); % m problems, n solvers.

for j = 1:n % Loop over solvers.

col = A(:,j)./minA; % Performance ratios.

col = col(~isnan(col)); % Remove NaNs.

if isempty(col), continue; end

theta = unique(col)'; % Unique elements, in increasing order.

r = length(theta);

prob = sum(col(:,ones(r,1)) <= theta(ones(length(col),1),:)) / m;

% Assemble data points for stairstep plot.

k = [1:r; 1:r]; k = k(:)';

x = theta(k(2:end)); y = prob(k(1:end-1));

% Ensure endpoints plotted correctly.

if x(1) >= 1 + tol, x = [1 x(1) x]; y = [0 0 y]; end

if x(end) < th_max - tol, x = [x th_max]; y = [y y(end)]; end

h(j) = plot(x,y); hold on

end

hold off

xlim([1 th_max])

412 Case Studies

coli = aij/min{ aik : k = 1: n }. In MATLAB notation, exploiting scalar expansion,
φj(θk) is8

sum(col <= theta(k))/m

We need to carry out this computation for each element in the 1-by-r row vector
theta, which can be done with the loop

for k = 1:r

prob(k) = sum(col <= theta(k))/m

end

Using the indexing trick from Section 24.4, this loop can be vectorized to

prob = sum(col(:,ones(r,1)) <= theta(ones(length(col),1),:)) / m

The reason for writing length(col) rather than m is that perfprof first needs to
remove NaNs from col, and hence when prob is formed col may have fewer than m

elements. The elements of theta, which are the distinct and sorted elements of col,
are obtained with the MATLAB function unique.

Some further work is needed to produce a plot that properly displays the piecewise
linear nature of the curves φj(θ) (i.e., a stairstep plot). The last few lines of the loop
construct the data pairs to be passed to plot.

To make the plots as readable as possible it is necessary to set line styles, marker
types, a legend, and so on. Achieving this within perfprof via input arguments
would be clumsy. Instead it is left for the user to set the relevant properties of the
graphics objects after calling perfprof.

Function ode pp in Listing 26.4 illustrates the use of perfprof. It times the three
MATLAB nonstiff ODE solvers (see Table 12.2) on six test problems. (Function fox1

is the function in Listing 12.3.) The function illustrates various advanced MATLAB
programming techniques that have been discussed in the book. In particular, it
includes both nested functions and local functions (with a nested function inside a
local function). Note that for the timings from ode pp to be meaningful we need to
run the function twice, as the first time it is run there is the unwanted overhead of
MATLAB compiling ode pp and the solvers into its internal format.

The performance profile plot from ode pp is shown in Figure 26.3. We now explain
how to interpret the figure. But, first, we emphasize that this example is purely
illustrative and the results should not be taken at face value. Indeed, some of the
test problems are difficult and this experiment does not check the correctness of
the solutions computed. The experiment was designed simply to give an interesting
performance profile. The numbers on which the figure is based are shown in Table 26.1
(this is the transpose of the array T returned by ode pp).

We now explain how to interpret Figure 26.3. Note first that since there are only
m = 6 test problems we have explicitly set the y-axis tick marks to the possible values
of φj(θ) (0, 1/m, 2/m, . . . , 1) and then assigned appropriately short tick labels; for
larger m, automatic tick marks will probably give better readability.

• Left-hand side of plot, φs(1): ode23 is the fastest solver on 50% of the prob-
lems, with ode45 and ode113 being fastest on 33% and 17% of the problems,
respectively.

8Since the argument to sum is a vector of zeros and ones, it would be more efficient to replace
sum by nnz here, but nnz does not produce the desired result in the vectorized expression used in
perfprof.

26.4 Performance Profiles 413

Table 26.1. Data in transpose of array T from ode pp.

Problem 1 2 3 4 5 6
ode23 1.26e-2 2.41e-1 3.74e-2 3.37e0 1.44e-1 5.06e-1
ode45 6.20e-3 1.53e-1 5.00e-2 6.45e0 1.56e-1 1.07e0
ode113 1.56e-2 1.97e-1 6.68e-2 7.86e0 3.76e-2 1.50e0

1 1.5 2 2.5 3 3.5 4

0

0.17

0.33

0.50

0.67

0.83

1

ode23

ode45

ode113

Figure 26.3. Performance profile produced by ode pp.

• Middle of plot, where the curves all cross: If our criterion for choosing a solver
is that it has an 83% chance of being within a factor 2.5 of the fastest solver
then all three solvers are equally good.

• Middle to right-hand side of plot, looking where the curves first hit probability
1: ode113 is within a factor θ of being the fastest solver on every problem for
θ ≈ 3. For the same to be true for ode23 and ode45 we need to increase θ to
3.8 and 4.1, respectively.

The performance profile therefore answers several different aspects of the question,
“Which is the best solver?” It shows that ode23 is most often the fastest, ode113
is the most reliable in the sense of being the least likely to be much slower than the
fastest, and ode45 treads a middle ground between the two (each statement applying
only to this very small and unrepresentative set of test problems).

414 Case Studies

Listing 26.4. Function ode pp.

function T = ode_pp

%ODE_PP Performance profile of three ODE solvers.

solvers = {@ode23, @ode45, @ode113}; nsolvers = length(solvers);

nproblems = 6;

nruns = 5; % Number of times to run solver to get more reliable timing.

for j = 1:nsolvers

code = solvers{j}

for i = 1:nproblems

options = [];

switch i

case 1

fun = @fox1; tspan = [0 10]; yzero = [3;0];

case 2

fun = @rossler; tspan = [0 100]; yzero = [1;1;1];

options = odeset('AbsTol',1e-7,'RelTol',1e-4);

case 3

fun = @fvdpol; tspan = [0 20]; yzero = [2;1]; mu = 10;

case 4

fun = @fvdpol; tspan = [0 20]; yzero = [2;1]; mu = 1000;

case 5

fun = @drug_transport; tspan = [0 6]; yzero = [0;0];

case 6

fun = @knee; tspan = [0 2]; yzero = 1;

end

t0 = clock;

for k = 1:nruns

[t,y] = code(fun,tspan,yzero,options);

end

T(i,j) = etime(clock,t0)/nruns;

end

end

[~,h] = perfprof(T);

ylim([0 1.05]), grid

yvals = 0:1/nproblems:1;

ax = gca;

ax.YTick = yvals;

ax.YAxis.TickLabelFormat = '%4.2f '

ax.YTickLabel{1} = '0 '; ax.YTickLabel{end} = '1 ';

ax.FontSize = 12;

legend('ode23','ode45','ode113','Location','SE')

set(h,{'Marker'},{'*','s','o'}') % Vectorized set.

set(h,'MarkerSize',8)

set(h,'MarkerFaceColor','auto') % Make marker interiors non-transparent.

26.4 Performance Profiles 415

set(h,{'LineStyle'},{'-','-','-'}') % Vectorized set.

set(h,'LineWidth',2)

function yprime = fvdpol(x,y)

%FVDPOL Van der Pol equation written as first order system.

% Parameter MU.

yprime = [y(2); mu*y(2)*(1-y(1)^2)-y(1)];

end

end

function yprime = rossler(t,y)

%ROSSLER Rossler system, parameterized.

a = 0.2; b = 0.2; c = 2.5;

yprime = [-y(2)-y(3); y(1)+a*y(2); b+y(3)*(y(1)-c)];

end

function yprime = drug_transport(t,y)

%DRUG_TRANSPORT Two-compartment pharmacokinetics example.

% Reference: Shampine (1994, p. 105).

yprime = [-5.6*y(1) + 48*pulse(t,1/48,0.5); 5.6*y(1) - 0.7*y(2)];

function pls = pulse(t,w,p)

%PULSE Pulse of height 1, width W, period P.

pls = (rem(t,p) <= w);

end

end

function yprime = knee(t,y)

%KNEE Knee problem.

% Reference: Shampine (1994, p. 115).

epsilon = 1e-4;

yprime = (1/epsilon)*((1-t)*y - y^2);

end

For a well-chosen set of test problems, the inequality φi(θ) ≤ φj(θ) holding for all
θ is certainly strong evidence that solver j is superior to solver i, but this inequality
does not imply that solver j performs better than solver i on every test problem. This
is illustrated by ode45 and ode23 in Table 26.1 and Figure 26.3.

In some applications a solver may fail to solve a problem. For example, an opti-
mization code may fail to converge or it may converge to a nonoptimal point. The
failure of solver j to solve problem i can be accounted for by setting A(i,j) = NaN.
To illustrate, consider this script, based on entirely fictitious data:

A = [1 2 3 4

2 4 6 8

NaN 3 NaN 2

1 2 5 2

NaN 10 NaN 20

1 1 4 6

3 NaN 4 5

416 Case Studies

4 2 3 1

NaN 2 2 2

NaN 3 5 5

NaN NaN NaN 5

NaN 2 1 3];

th_max = 7;

[~,h] = perfprof(A,th_max*1.1);

xlim([1 th_max]), ylim([0 1.05])

legend('Column 1','Column 2','Column 3','Column 4','Location','SE')

set(h,{'LineStyle'},{'-','-.','--',':'}') % Vectorized set.

set(h,{'Color'},{'r','b','g','k'}') % Vectorized set.

set(h,{'Marker'},{'*','o','s','+'}') % Vectorized set.

set(h,'MarkerFaceColor','auto') % Marker interiors non-transparent.

set(h,'LineWidth',2), set(h,'MarkerSize',8)

set(gca,'YTick',0:0.1:1)

set(gca,'FontSize',12)

Figure 26.4 is produced. The intersection of the curves with the right-hand axis shows
the proportion of problems that could be solved, ranging from 0.5 to 1. The solver
corresponding to the red line and the “*” marker (and represented by the first column
of A) was most often the best but solved the fewest problems. Such information would
be hard to discern from a large array of data, but it is immediately apparent from
the figure. This example illustrates the use of the second input argument th max

of perfprof. By default, the x-axis would cover the range [0, 6]. We have called
perfprof with a larger value of th max in order to better display the “flatlining”
effect. The reason we pass a second argument to perfprof that is slightly larger
than the intended x-axis upper limit is to avoid markers being plotted where the lines
meet the right-hand edge of the plot, since these intersections are not data points.
With a more complicated data set it may be necessary to call perfprof twice: once
to compute the default th max and a second time with an increased value (as in this
example).

We note two further refinements. First, for data sets that produce a large th max,
setting a logarithmic scale on the x-axis can help make the performance profile
more readable. This can be done after calling perfprof by issuing the command
set(gca,'XScale','log') (see Section 17.1). Second, when the data are relative
errors of the order eps, the performance profile can be skewed by the presence of a
few abnormally small relative errors much smaller than eps. In this case, the simple
transformation of the data suggested in [34] can produce a more meaningful perfor-
mance profile.

26.5. Multidimensional Calculus

The calculus features of the Symbolic Math Toolbox are very useful for solving prob-
lems that are too tedious to treat by hand yet small and simple enough that symbolic
manipulation is feasible. We illustrate by finding and classifying the stationary points
of the function

F (x, y) = 4x2 − 3x4 + x6/3 + xy − 4y2 + 4y4. (26.4)

This is a slight variation of the function pictured in Figure 8.17.

26.5 Multidimensional Calculus 417

1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Column 1

Column 2

Column 3

Column 4

Figure 26.4. Performance profile for fictitious data in 12-by-4 array A.

The stationary points are the points where the gradient vector

∇F (x, y) =

∂F

∂x
∂F

∂y

is zero. The nature of a stationary point—minimum, maximum, or saddle point—can
be determined from the signs of the eigenvalues of the Hessian matrix,

∇2F (x, y) =

∂2F

∂x2
∂F

∂x∂y

∂F

∂y∂x

∂2F

∂y2

 ,
provided the matrix is nonsingular.

Code and Walk-through

Script camel solve in Listing 26.5 symbolically computes the gradient and then uses
solve to find the points where the gradient is zero. A general principle is that
results from a symbolic manipulation package should always be tested and should
not automatically be trusted. For each putative stationary point, the code checks
numerically that the gradient is small enough to be regarded as zero, and it discards
complex solutions, which are not of interest.

The gradient and Hessian are computed symbolically using the toolbox commands
gradient and hessian, for conciseness of code. The eigenvalues of the numerically
evaluated Hessians are then used to classify the stationary points. Finally, the station-
ary points are printed, arranged by type, and the contour plot shown in Figure 26.5
is produced. The output from the script is as follows:

418 Case Studies

Listing 26.5. Script camel solve.

%CAMEL_SOLVE Find stationary points of the camel function.

% This script requires the Symbolic Math Toolbox.

format short e

syms x y

f = 4*x^2 - 3*x^4 + x^6/3 + x*y - 4*y^2 + 4*y^4;

g = gradient(f,[x y])

disp('Original solutions:')

s = solve(g)

H = hessian(f,[x,y])

n = length(s.x); j = 1; minx = []; maxx = []; saddlex = [];

for i = 1:n % Loop over stationary points.

fprintf('Point %2.0f: ',i)

xi = s.x(i); yi = s.y(i); pointi = double([xi yi]);

gi = double(subs(g,{x,y},{xi,yi}));

% Filter out nonreal points and points where gradient not zero.

if norm(gi) > eps

fprintf('gradient is nonzero!\n')

elseif ~isreal(pointi)

fprintf('is nonreal!\n')

else

fprintf('(%10.2e,%10.2e) ', pointi)

Hi = double(subs(H,{x,y},{xi,yi}));

eig_Hi = eig(Hi);

if all(eig_Hi > 0)

minx = [minx; pointi]; fprintf('minimum\n')

elseif all(eig_Hi < 0)

maxx = [maxx; pointi]; fprintf('maximum\n')

elseif prod(eig_Hi) < 0

saddlex = [saddlex; pointi]; fprintf('saddle point\n')

else

fprintf('nature of stationary point unclear\n')

end

end

end

minx, maxx, saddlex

plot(minx(:,1),minx(:,2),'*k', maxx(:,1),maxx(:,2),'ok',...

saddlex(:,1),saddlex(:,2),'xk','MarkerSize',8)

hold on, a = axis;

[x,y] = meshgrid(linspace(a(1),a(2),200),linspace(a(3),a(4),200));

z = subs(f); % Replaces symbolic x, y with numeric values from workspace.

contour(x,y,z,30)

map = hot; colormap(map(1:40,:)); % Darker part of this color map.

xlim([-2.5 2.5]) % Fine tuning.

legend('Min', 'Max', 'Saddle')

g = findall(gca,'type','axes'); set(g,'Fontsize',12)

hold off

26.5 Multidimensional Calculus 419

g =

2*x^5 - 12*x^3 + 8*x + y

16*y^3 - 8*y + x

Original solutions:

s =

x: [15×1 sym]

y: [15×1 sym]

H =

[10*x^4 - 36*x^2 + 8, 1]

[1, 48*y^2 - 8]

Point 1: (0.00e+00, 0.00e+00) saddle point

Point 2: (8.82e-01, 1.13e-01) maximum

Point 3: (9.18e-01, 6.41e-01) saddle point

Point 4: (-9.02e-02, 7.13e-01) minimum

Point 5: (-8.14e-01, 7.53e-01) saddle point

Point 6: (-2.30e+00, 8.21e-01) minimum

Point 7: is nonreal!

Point 8: is nonreal!

Point 9: (-8.82e-01, -1.13e-01) maximum

Point 10: (-9.18e-01, -6.41e-01) saddle point

Point 11: (9.02e-02, -7.13e-01) minimum

Point 12: (8.14e-01, -7.53e-01) saddle point

Point 13: (2.30e+00, -8.21e-01) minimum

Point 14: is nonreal!

Point 15: is nonreal!

minx =

-9.0183e-02 7.1268e-01

-2.2969e+00 8.2144e-01

9.0183e-02 -7.1268e-01

2.2969e+00 -8.2144e-01

maxx =

8.8223e-01 1.1318e-01

-8.8223e-01 -1.1318e-01

saddlex =

0 0

9.1833e-01 6.4063e-01

-8.1410e-01 7.5335e-01

-9.1833e-01 -6.4063e-01

8.1410e-01 -7.5335e-01

Fifteen stationary points are found symbolically, 11 of which are verified to be real
and have a zero gradient.

There is no guarantee that the solve function yields all the solutions of the system
it is asked to solve, so further analysis is needed to determine whether camel solve

has found all the stationary points. More sophisticated methods for solving this type
of problem are explained in Chapter 4, titled “Think Globally, Act Locally”, of [13],
which contains some MATLAB code.

420 Case Studies

-2 -1 0 1 2

-1

-0.5

0

0.5

1

Min

Max

Saddle

Figure 26.5. Contours and stationary points of camel function (26.4).

26.6. L-Systems and Turtle Graphics

The L-system formulation provides a simple means to draw plant-like objects. We
will consider the case where such objects are represented by strings from an alphabet
of five characters: F, [,], +, -. Here, the [and] characters must appear in matching
pairs. We may view a string formally using the turtle graphics idea. Imagine a turtle
equipped with a pen. The turtle reads the characters in the string sequentially, from
left to right, interpreting them as instructions, and thereby draws a picture. At
any given stage, the turtle has a current position, (x, y), and a current move vector,
(dx, dy). The characters have the following precise meanings.

F means perform the current move; that is, draw a line from (x, y) to (x+dx, y+dy).
Update the current position to (x+ dx, y + dy). Keep the current move vector
as (dx, dy).

+ means turn clockwise through a prespecified angle θ+; that is, change the current
move vector from (dx, dy) to (cos(θ+)dx+ sin(θ+)dy, − sin(θ+)dx+ cos(θ+)dy).

- means turn counterclockwise through a prespecified angle θ−; that is, change
the current move vector from (dx, dy) to (cos(θ−)dx − sin(θ−)dy, sin(θ−)dx +
cos(θ−)dy).

[means record the current values of (x, y) and (dx, dy); that is, push them onto a
stack. Then scale (dx, dy) by a prespecified factor. The turtle does not move.
When the matching] marker is reached, that position (x, y) and move vector
(dx, dy) are popped off the stack; the turtle returns to (x, y) (without drawing)
and resets its current move vector to (dx, dy).

In order to create our strings, we must define an initial state and a production
rule. We will always take the initial state to be F. Then, in general, to get from one

26.6 L-Systems and Turtle Graphics 421

F[+F][-F][++F][--F] F[+F]F[-F][F]

F[+F][-F][++F]F[+F][-F] FF-[-F+F+F]+[+F-F-F]

Figure 26.6. Members of the genus Matlabius Floribundum produced by lsys.

generation to the next we replace every occurrence of F by the production rule. For
example, with the production rule F[+F]F[-F]F we have

Initial state F

1st generation F[+F]F[-F]F

2nd generation F[+F]F[-F]F[+F[+F]F[-F]F]F[+F]F[-F]F[-F[+F]F[-F]F]

F[+F]F[-F]F

The process is akin to using the “search and replace all” facility available in a typical
text editor, with F being searched for and replaced by the production rule. Our aim
is now to draw the picture that arises when the rule, generation level, turning angles,
and scale factor are specified.

The book [143] gives a very readable discussion of the ideas behind L-systems,
which are named after the Swedish biologist Aristid Lindenmayer (1925–89).

Code and Walk-through

The recursive function lsys in Listing 26.6 combines the string production and string
interpretation phases. The input variable rule is the required production rule. lsys

422 Case Studies

uses the switch construct to parse the rule, taking the appropriate action for each
character. In particular, F results in a recursive call to lsys with the generation
decremented by one. Note that the arrays cstack and dstack are not preallocated.
Since the stack is usually just a few levels deep this is not a major inefficiency. Called
with gen equal to 1, lsys draws the first generation plant.

The script lsys run in Listing 26.7 calls lsys with four different sets of parame-
ters, producing the pictures in Figure 26.6.

26.7. Black–Scholes Delta Surface

A European call option is a financial product that gives its holder the right to purchase
from its writer an asset at a specified price, known as the exercise price, at some
specified time in the future, known as the expiry date. A seminal paper by Black and
Scholes shows how the writer of an option can eliminate risk by dynamically hedging
with a portfolio of asset and cash. The amount of asset that the writer must hold is
known as the delta of the option. Black and Scholes’s formula for the delta is N(d1),
where

d1 =
log(S(t)/E) + (r + 1

2σ
2)(T − t)

σ
√
T − t

. (26.5)

Here,

• t denotes time, with t = 0 and t = T specifying the start and expiry dates,

• S(t) is the asset price at time t,

• E is the exercise price,

• r is the interest rate,

• σ is the asset volatility,

• N(·) is the distribution function for a standard normal random variable, defined
as

N(x) :=
1√
2π

∫ x

−∞
e−s

2/2 ds.

MATLAB has a function erf that evaluates the error function

erf(x) :=
2√
π

∫ x

0

e−t
2

dt,

from which the normal distribution function may be obtained as

N(x) =
1 + erf

(
x/
√

2
)

2
.

The Black–Scholes theory is derived under the assumption that the asset price
S(ti) at time ti evolves into S(ti+1) at time ti+1 > ti according to

S(ti+1) = S(ti) exp
(
(µ− 1

2σ
2)(ti+1 − ti) + σ

√
ti+1 − tiZi)

)
, (26.6)

where Zi is a standard normal random variable. Here, µ is a constant that governs
the expected increase in the asset.

26.7 Black–Scholes Delta Surface 423

Listing 26.6. Function lsys.

function [coord,mov] = lsys(rule,coord,mov,angle,scale,gen)

%LSYS Recursively generated L-system.

% LSYS(rule,coord,mov,angle,scale,gen) generates the L-system

% produced by gen generations of the production rule given

% in the string rule.

% coord and mov are the initial (x,y) and (dx,dy) values.

% angle is a 2-vector, with angle(1) specifying the clockwise

% rotations and angle(2) the counterclockwise rotations.

% scale is the scale factor for branch length.

% During recursion, gen, coord, and mov record the current state.

if gen == 0

% Draw line, then update location.

plot([coord(1),coord(1)+mov(1)],[coord(2),coord(2)+mov(2)])

coord = coord + mov;

hold on

else

stack = 0;

for k=1:length(rule)

switch rule(k)

case 'F'

[coord,mov] = lsys(rule,coord,mov,angle,scale,gen-1);

case '+'

mov = [cos(angle(1)) sin(angle(1));

-sin(angle(1)) cos(angle(1))]*mov;

case '-'

mov = [cos(angle(2)) -sin(angle(2));

sin(angle(2)) cos(angle(2))]*mov;

case '['

stack = stack + 1;

cstack(1:2,stack) = coord;

dstack(1:2,stack) = mov;

mov = scale*mov;

case ']'

coord = cstack(1:2,stack);

mov = dstack(1:2,stack);

stack = stack - 1;

end

end

end

424 Case Studies

Listing 26.7. Script lsys run.

%LSYS_RUN Runs lsys function to draw L-systems.

subplot(2,2,1)

rule = 'F[+F][-F][++F][--F]';

[c,d] = lsys(rule,[0;0],[0;1],[pi/8;pi/5],0.6,5);

options = {'FontSize',8,'FontWeight','normal'};

title(rule,options{:}), axis equal, axis off

subplot(2,2,2)

rule = 'F[+F]F[-F][F]';

[c,d] = lsys(rule,[0;0],[0;1],[pi/6;pi/6],1,5);

title(rule,options{:}), axis equal, axis off

subplot(2,2,3)

rule = 'F[+F][-F][++F]F[+F][-F]';

[c,d] = lsys(rule,[0;0],[0;1],[pi/5;pi/6],0.8,4);

title(rule,options{:}), axis equal, axis off

subplot(2,2,4)

rule = 'FF-[-F+F+F]+[+F-F-F]';

[c,d] = lsys(rule,[0;0],[0;1],[pi/6;pi/6],0.7,4);

title(rule,options{:}), axis equal, axis off

Our aim is to plot the delta-value N(d1) as a function of asset price S and time t,
with all the other parameters, T , E, r, σ, and µ, fixed. This will give a surface above
the (S, t)-plane. We will then generate three asset paths over [0, T], using (26.6) to
update the price between finely spaced time points, with the Zi generated by calls to
the normal pseudorandom number generator, randn. We will sit these paths on the
delta surface, that is, plot the path of N(d1) when d1 in (26.5) takes the values given
by (Si, ti). This illustrates the amount of asset that the option writer must maintain
as the asset price evolves, in each of the three cases.

For further details on financial option valuation, see, for example, [67] and [183].

Code and Walk-through

The script bsdelta in Listing 26.8 produces the picture in Figure 26.7. A key issue
to address here is the division-by-zero arising when t = T in (26.5). This difficulty is
avoided by defining N(d1) at t = T in terms of its limit from below:

lim
t→T−

N(d1) =

1 if S(T) > E,
1
2 if S(T) = E,

0 if S(T) < E.

(26.7)

After initializing parameters, we use meshgrid to set up the arrays Sgrid and
tgrid that are needed by surf, with the final time level omitted. We compute d1
and N(d1) at these points, and then fill in the t = T values separately, using (26.7).
We call surf to display the surface, and then mark and label the axes.

26.8 Chutes and Ladders 425

T
S

E

t

delta

0

Figure 26.7. Black–Scholes delta picture from bsdelta.

The second part of the code generates the three asset paths. We take starting
values of 1.5, 0.95, and 0.7. The cumulative product function, cumprod, is used to
apply (26.6) over all time points. We then use the formula (26.5) for t < T and (26.7)
for t = T to give a path of surface heights, Npath. These are superimposed by the 3D
line plotter, plot3, with an increment of deltaN = 0.1 added to the heights so that
the paths are visible above the surface. Finally, we alter the default view to give a
clearer picture.

26.8. Chutes and Ladders

In the game of Chutes and Ladders (also known as Snakes and Ladders) a player
moves between squares on a board according to the roll of a die. On each turn, the
number rolled, 1, 2, 3, 4, 5, or 6, determines how many squares to advance, with the
constraints that

• if the new location is the foot of a ladder, the player automatically jumps up to
the square at the top of that ladder,

• if the new location is the top of a chute (head of a snake), the player automati-
cally slides down to the square at the end of that chute (tail of that snake),

• if the player would progress beyond the final square, that turn is discarded, and
the player’s location is unchanged.

The game typically involves two or more players, with the first to reach the final
square being deemed the winner. However, as there is no interaction between players,

426 Case Studies

Listing 26.8. Script bsdelta.

%BSDELTA Black--Scholes delta surface with three asset paths superimposed.

rng(51)

E = 1; r = 0.05; sigma = 0.6; mu =0.05; T = 1;

N1 = 50; Dt = T/N1; N2 = 60;

tvals = [0:Dt:T-Dt]; % Avoid division by zero.

Svals = linspace(.01,2.5,N2);

[Sgrid,tgrid] = meshgrid(Svals,tvals);

d1grid = (log(Sgrid/E) + ...

(r+0.5*sigma^2)*(T-tgrid))./(sigma*sqrt(T-tgrid));

Ngrid = 0.5*(1+erf(d1grid/sqrt(2)));

tvals = [0:Dt:T]; % Add expiry date.

[Sgrid,tgrid] = meshgrid(Svals,tvals); % Extend the grid.

Ngrid(end+1,:) = 0.5*(sign(Svals - E) + 1); % Append final time values.

surf(Sgrid,tgrid,Ngrid)

hx = xlabel('S','FontWeight','bold','FontSize',16);

hx.Position = hx.Position + [0.2 -0.1 0.2];

hy = ylabel('t','FontWeight','bold','FontSize',16);

hy.Position = hy.Position + [0 0.15 0];

zlabel('delta','FontWeight','bold','FontSize',16,...

'Rotation',0,'HorizontalAlignment','right')

ylim([0 T]), xlim([0 2.5])

set(gca,'ZTick',[])

set(gca,'YTick',[0,T]), set(gca,'YTickLabel',{'0','T'},'FontSize',12)

set(gca,'XTick',E), set(gca,'XTickLabel','E','FontSize',12)

% Superimpose asset paths.

hold on

L = 200; Dt = T/L;

tpath = [0:Dt:T-Dt]';

Szero = [1.5;0.95;0.7];

for k = 1:3

factors = exp((mu-0.5*sigma^2)*Dt+sigma*sqrt(Dt)*randn(L,1));

Spath = [Szero(k);Szero(k)*cumprod(factors)];

dpath = (log(Spath(1:end-1)/E) + ...

(r+0.5*sigma^2)*(T-tpath))./(sigma*sqrt(T-tpath));

Npath = 0.5*(1+erf(dpath/sqrt(2)));

Npath = [Npath;0.5*(sign(Spath(end)-E)+1)];

deltaN = 0.1;

Npath(2:end) = Npath(2:end)+deltaN;

plot3(Spath,[tpath;T],Npath,'w-','Linewidth',2)

end

hold off, view(-60,35)

26.8 Chutes and Ladders 427

it is informative to study the single-player game, as we do here. For a given board,
we wish to compute

1. the probability of finishing in exactly n rolls, and

2. the probability of finishing in at most n rolls.

Using a Markov chain formulation, this becomes a matrix computation problem.
Given the player’s current location, it is possible to write down the probability

of a move to any other square on the next roll. Suppose there are N squares on
the board, ordered from 1 to N . We specify that the player starts “off the board”;
so we introduce a fictitious zeroth square to represent the player’s location before
the first roll. For convenience we will refer to states instead of squares, with state
i representing square i − 1, so the states are ordered from 1 to N + 1. In the case
where there are no chutes or ladders on the board, the transition matrix is (with
blank entries denoting zeros)

P =
1

6

0 1 1 1 1 1 1
0 1 1 1 1 1 1

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 1 1 1 1 1 1
1 1 1 1 1 1

2 1 1 1 1
3 1 1 1

4 1 1
5 1

6

∈ R(N+1)×(N+1). (26.8)

Here, for a player currently at state i, pij is the probability of occupying state j
after the next roll. Now suppose we add a chute or ladder to the board so that a
player landing at state r is automatically transported to state s. Then state r is no
longer a possible location, and we should alter the transition matrix by (a) adding
column r to column s and (b) removing row and column r. Having done this for all
chutes and ladders, letting P now denote the resulting transition matrix, a standard
Markov chain result tells us that the probability of reaching the final state in n rolls
or less is given by the last entry in the first row of Pn. The appropriate Markov chain
background theory may be found, for example, in [136].

Code and Walk-through

The script chute in Listing 26.9 produces the pictures in Figures 26.8 and 26.9. Here,
we have a board with N = 100 squares and 19 chutes/ladders. The kth chute/ladder
starts at state top(k) and terminates at state bot(k); if top(k) is less than bot(k),
we have a ladder, otherwise we have a chute. We begin by setting up P in (26.8);
since P has Toeplitz structure except for the main diagonal, this is conveniently done
using the toeplitz function. Colon notation and empty array assignments are used
in accounting for the chutes and ladders. Note that the row/column deletions take
place after all column updates have been done—if the operations P(top,:) = [];

P(:,top) = []; appeared inside the for k = 1:length(top) loop, then we would no
longer be able to use the original numbering system for top and bot.

428 Case Studies

0 20 40 60 80

nz = 476

0

10

20

30

40

50

60

70

80

Figure 26.8. spy plot of transition matrix from chute.

0 20 40 60 80 100 120 140 160 180 200

0

0.01

0.02

0.03
Probability for Game Length

0 20 40 60 80 100 120 140 160 180 200

0

0.5

1
Cumulative Probability for Game Length

Figure 26.9. Probability of finishing chutes and ladders game in exactly n rolls (upper)
and at most n rolls (lower).

26.8 Chutes and Ladders 429

Listing 26.9. Script chute.

%CHUTE Chutes and ladders analysis.

% Probability of finishing in exactly n moves and in at least n moves.

N = 100; % Start at square zero, finish at square N.

% "+1" translates square to state.

top = [1 4 9 16 21 28 36 47 49 51 56 62 64 71 80 87 93 95 98] + 1;

bot = [38 14 31 6 42 84 44 26 11 67 53 19 60 91 100 24 73 75 78] + 1;

P = toeplitz(zeros(1,N+1),[0 ones(1,6) zeros(1,N-6)]);

for k = N-4:N+1, P(k,k) = k-N+5; end

P = P/6;

for k = 1:length(top)

r = top(k); s = bot(k); % Chute or ladder from r to s.

P(:,s) = P(:,s) + P(:,r); % Add column r to column s.

end

P(top,:) = []; P(:,top) = []; % Remove starts of chutes and ladders.

figure(1)

spy(P)

M = 200;

cumprob = zeros(M,1);

cumprob(1) = P(1,end);

v = P(1,:);

for n = 2:M

v = v*P;

cumprob(n) = v(end);

end

figure(2)

colormap lines

subplot(2,1,1)

bar(diff([0;cumprob]))

title('Probability for Game Length')

grid on

xlim([0 M])

subplot(2,1,2)

bar(cumprob)

title('Cumulative Probability for Game Length')

grid on

xlim([0 M])

430 Case Studies

Having constructed the final transition matrix, which has dimension N + 1−19 =
82, we use spy to reveal the nonzero structure, as shown in Figure 26.8. We then
compute the array cumprob, whose nth entry stores the probability of reaching the
final state in no more than n rolls, for 1 ≤ n ≤ 200. Applying diff to [0;cumprob]

gives an array whose nth entry stores the probability of reaching the final state in
exactly n rolls. The appropriate histograms are shown in Figure 26.9.

26.9. Pythagorean Sum

The Pythagorean sum
√
a2 + b2 of two scalars is a commonly occurring quantity and

can be regarded as an “atomic operation” on a par with the four elementary operations
+, −, ∗, / and the square root of a single scalar. Fast, reliable ways of computing
Pythagorean sums are therefore needed. It is desirable to avoid explicitly computing
a square root, since the square root is a relatively expensive operation, and also to
avoid squaring a or b, since the squares could overflow or underflow despite

√
a2 + b2

being within the range of the arithmetic. The MATLAB function hypot computes the
Pythagorean sum of numeric arrays. Here, we will look at an approach particularly
well-suited to high-precision computation.

Given x0 ≥ 0 and y0 ≥ 0 the following iteration computes p =
√
x20 + y20 :

xn+1 = xn

(
1 + 2

y2n
4x2n + y2n

)
, (26.9a)

yn+1 =
y3n

4x2n + y2n
. (26.9b)

To be precise, it can be shown that as n→∞, xn converges monotonically to p from
below, and yn decreases monotonically to 0 from above, with

√
x2n + y2n = p. The

rate of convergence of the iteration is cubic, which means that ultimately the error
in xn and yn is bounded by a multiple of the cube of the error in xn−1 and yn−1,
respectively.

The iteration was originally suggested by Moler and Morrison, who develop an ele-
gant floating-point arithmetic implementation that avoids overflow [129]. Our interest
is in using the iteration to compute the Pythagorean sum to arbitrary precision, and
for simplicity we will not scale to avoid overflow. It is when working to high precision
that iterations with cubic or higher orders of convergence are particularly attractive.

Code and Walk-through

Function pythag in Listing 26.10 implements iteration (26.9) in the vpa arithmetic
of the Symbolic Math Toolbox. It has a third input argument, d, that specifies the
required number of significant digits. The computations are done with d + 10 digits,
since rounding errors can be expected to make the last few digits incorrect. The first
two input arguments can be symbolic expressions, so they are converted to vpa form
before beginning the iteration; absolute values are also taken, to allow the routine to
work for negative arguments. We use the function narginchk discussed in Section 10.6
to check that the requisite number of input arguments has been provided.

For efficiency of the iteration it is important to order the starting values so that
y0 ≤ x0, since otherwise the first few iterations are spent making xn (which tends to
a positive value) greater than yn (which tends to zero). Note the use of the variables
yn2 and temp to reduce the amount of computation.

26.9 Pythagorean Sum 431

Listing 26.10. Function pythag.

function [xn,k] = pythag(x,y,d,noprnt)

%PYTHAG Pythagorean sum in variable precision arithmetic.

% p = PYTHAG(x,y,d) computes the Pythagorean sum

% sqrt(x^2+y^2) of the real numbers x and y correct to about d

% significant digits, using an iteration that avoids computing

% square roots. d defaults to 50.

% By default, the progress of the iteration is printed;

% the call PYTHAG(x,y,d,1) suppresses this.

% [x,k] = PYTHAG(x,y,d) returns also the number of

% iterations, k.

narginchk(2,4) % Check number of input arguments.

if nargin < 4, noprnt = 0; end

if nargin < 3, d = 50; end

d_old = digits;

% Work with slightly more accuracy than requested for final result.

digits(d+10)

x = abs(vpa(x)); y = abs(vpa(y));

xn = max(x,y); % Take max since xn increases to Pyth. sum.

yn = min(x,y);

k = 0;

x_change = 0;

while abs(x_change) < d

k = k +1;

yn2 = yn^2;

temp = yn2/(4*xn^2+yn2);

xnp1 = xn*(1 + 2*temp);

ynp1 = yn*temp;

x_change = double(log10(abs((xnp1-xn)/xnp1)));

y_exp = double(log10(ynp1));

if ~noprnt

fprintf('log(rel_change_x_n): %6.0f, log(y_n): %6.0f\n', ...

x_change, y_exp)

end

xn = xnp1; yn = ynp1;

end

xn = vpa(xn,d); % Return requested number of digits.

digits(d_old) % Restore original value.

432 Case Studies

The convergence test checks whether the dth significant digit has changed since the
previous iteration. The absolute value of the relative change in two successive iterates
can be smaller than the smallest positive double-precision number (realmin), in which
case it underflows to zero if converted to double precision. Hence in implementing the
convergence test we compute the base 10 logarithm of the relative change, which is
representable in double precision. The function prints to the screen information that
shows the convergence of the iteration.

To illustrate, we compute
√

(1/10)2 + e2 to 2,500 significant digits and check the
result against the answer computed directly in vpa arithmetic. The code

d = 2500; digits(d)

x = sym('0.1'); y = sym(exp(sym(1)));

z = pythag(x,y,d);

z = char(z); [z(1:60) '...']

% Check:

p = vpa(sqrt(x^2+y^2), d+10);

p = char(p);

test_equal = strcmp(z(1:d),p(1:d))

produces the output

log(rel_change_x_n): -3, log(y_n): -4

log(rel_change_x_n): -10, log(y_n): -15

log(rel_change_x_n): -31, log(y_n): -46

log(rel_change_x_n): -93, log(y_n): -140

log(rel_change_x_n): -281, log(y_n): -421

log(rel_change_x_n): -843, log(y_n): -1264

log(rel_change_x_n): -Inf, log(y_n): -3795

ans =

2.7201206037473136693255563235433096109025216407472208575162...

test_equal =

1

The -Inf is a result of xn and xnp1 being exactly equal. The cubic convergence is
evident in the increase in size of the logarithms by a factor approximately three from
one line to the next.

Figure 26.10 plots the execution time of pythag versus the number of requested
digits for x = vpa(’1/3’), y = vpa(’1/7’). We see approximately linear growth of
time with the number of digits. The number of iterations increases very slowly because
of the cubic convergence, varying from 5 to 10.

26.10. Fisher’s Equation

Fisher’s equation, a PDE of the form

∂u

∂t
=
∂2u

∂x2
+ u(1− u),

is used as a model for various biological phenomena. The right-hand side of the
equation combines a diffusion term with a logistic growth term. It is common to

26.10 Fisher’s Equation 433

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of digits requested

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
 (

s
e

c
o

n
d

s
)

Figure 26.10. Execution time of pythag versus requested accuracy.

pose the equation over the whole x-axis, −∞ < x < ∞, and to specify boundary
conditions u(x, t) → 1 as x → −∞ and u(x, t) → 0 as x → ∞. In this context,
traveling-wave solutions of the form u(x, t) = f(x − ct) have been widely studied.
For such a solution, the function f defines a fixed profile that is transported along
the x-axis as time evolves. If we let z = x − ct, then the solution u(z, t) becomes
stationary (independent of time) in the moving coordinate system (z, t). In the hope
of catching a traveling wave, we will take a large space interval, −50 ≤ x ≤ 50, and
specify Neumann boundary conditions ∂u/∂x = 0 at x = ±50. We will solve the PDE
for 0 ≤ t ≤ 20 with two different initial conditions: the step function

u(x, 0) =

{
0.99, x ≤ −20,

0, x > −20;
(26.10)

and the small hump

u(x, 0) =

{
1
4 cos2(πx10), |x| ≤ 5,

0, |x| > 5.
(26.11)

Code and Walk-through

The function fisher in Listing 26.11 uses pdepe to solve Fisher’s equation, producing
the pictures in Figures 26.11 and 26.12. The local function fica implements the first
initial condition, (26.10), and a mesh plot of the resulting solution is displayed in
the upper left region of the first figure window. We set view(30,30) in order to get
a more revealing perspective. It appears that the solution is indeed evolving into a
fixed profile that progresses linearly in time. To investigate further, the upper right
picture shows contour applied to the solution, specifying contour levels of 0.2, 0.4, 0.6,
and 0.8. The contours appear to settle into equally spaced straight lines. Although
Fisher’s equation admits traveling waves of any speed c ≥ 2, it may be argued (see,

434 Case Studies

200

t

-50 10

u(x,t)

x

1
u

0
0

2

50

Contour Plot

Ref. slope = 2

-50 0 50

x

0

5

10

15

20

t

200

t

-50 10

u(x,t)

x

1
u

0
0

2

50

Contour Plot

Ref. slope = 2

-50 0 50

x

0

5

10

15

20

t

Figure 26.11. Traveling-wave solutions for Fisher’s equation, from fisher.

for example, [131]) that a wave of speed c = 2 is the most likely to be observed. A
reference triangle of this slope has been added with a basic plot command to give a
visual check.

The second initial condition, (26.11), implemented in ficb, gives rise to the pic-
tures in the lower half of Figure 26.11. In this case, two wavefronts are generated,
emanating from each side of the initial hump, and the contour plot is again consistent
with wave speed c = 2.

In the second figure window, as shown in Figure 26.12, we waterfall the so-
lution for (26.10) in the moving coordinate system (x − 2t, t) to give further visual
confirmation that a traveling wave of speed c = 2 has emerged.

26.10 Fisher’s Equation 435

Listing 26.11. Script fisher.

function fisher

%FISHER Displays solutions to Fisher PDE.

m = 0; a = -50; b = 50; t0 = 0; tf = 20;

xvals = linspace(a,b,101); tvals = linspace(t0,tf,51);

[xmesh, tmesh] = meshgrid(xvals,tvals);

figure(1), subplot(2,2,1), sol = pdepe(m,@fpde,@fica,@fbc,xvals,tvals);

ua = sol(:,:,1); mesh(xmesh,tmesh,ua)

xlabel('x'), ylabel('t'), zlabel('u','Rotation',0), title('u(x,t)')

text_set, view(30,30)

subplot(2,2,2), contour(xmesh,tmesh,ua,[0.2:0.2:0.8])

xlabel('x'), ylabel('t','Rotation',0), title('Contour Plot')

text_set, hold on, txt = {'Ref. slope = 2','FontSize',8};

plot([10,20,20,10],[8,13,8,8],'r--'), text(0,6,txt{:}), hold off

subplot(2,2,3), sol = pdepe(m,@fpde,@ficb,@fbc,xvals,tvals);

ub = sol(:,:,1); mesh(xmesh,tmesh,ub)

xlabel('x'), ylabel('t'), zlabel('u','Rotation',0), title('u(x,t)')

text_set, view(30,30)

subplot(2,2,4), contour(xmesh,tmesh,ub,[0.2:0.2:0.8])

xlabel('x'), ylabel('t','Rotation',0), title('Contour Plot')

text_set, hold on

plot([25,35,35,25],[5,10,5,5],'r--'), text(11,3,txt{:}), hold off

figure(2), zmesh = xmesh - 2*diag(tvals)*ones(size(xmesh));

waterfall(zmesh,tmesh,ua)

xlabel('x-2t'), ylabel('t'), zlabel('u','Rotation',0), title('u(x-2t,t)')

zlim([0 1]), text_set, view(15,30)

%-------------------------- Local functions ------------------------------%

function [c,f,s] = fpde(x,t,u,DuDx)

%FDE Fisher PDE.

c = 1; f = DuDx; s = u*(1-u);

function u0 = fica(x)

%FIC Fisher initial condition: 1st case.

u0 = 0.99*(x<=-20);

function [pa,qa,pb,qb] = fbc(xa,ua,xb,ub,t)

%FBC Fisher boundary conditions.

pa = 0; qa = 1; pb = 0; qb = 1;

function u0 = ficb(x)

%FIC2 Fisher initial condition: 2nd case.

u0 = 0.25*(cos(0.1*pi*x).^2).*(abs(x)<=5);

function text_set

h = findall(gca,'type','text'); set(h,'FontSize',12,'FontWeight','bold')

436 Case Studies

Figure 26.12. Solution of Fisher’s equation for initial conditions (26.10) in moving
coordinate system, from fisher.

26.10 Fisher’s Equation 437

Example is always more efficacious than precept.

— SAMUEL JOHNSON (1759)

The computation of sqrt(a2 + b2) is required in many matrix algorithms,

particularly those involving complex arithmetic.

A new approach to carrying out this operation is described by

Moler and Morrison

In MATLAB, the algorithm is used for complex modulus,

Euclidean vector norm, plane rotations,

and the shift calculation in the eigenvalue and singular value iterations.

— CLEVE B. MOLER, MATLAB Users’ Guide (1982)

Performance profiles can be used to compare the performance of two solvers,

but performance profiles are most useful in comparing several solvers.

Because large amounts of data are generated in these situations,

trends in performance are often difficult to see.

— ELIZABETH D. DOLAN and JORGE J. MORÉ,

Benchmarking Optimization Software with Performance Profiles (2002)

One of the reasons MATLAB is so good at signal processing is that

it was not designed for signal processing.

It was designed for mathematics.

— JAMES MCCLELLAN

And none of this would have been any fun without MATLAB.

— NOËL M. NACHTIGAL, SATISH C. REDDY, and LLOYD N. TREFETHEN,

How Fast Are Nonsymmetric Matrix Iterations? (1992)

Appendix A

The Top 111 MATLAB Functions

This appendix lists the 111 MATLAB functions that we believe are the most useful
for the typical MATLAB user. Information about these functions can be found by
looking in the index of this book or by using the online MATLAB documentation.

Table A.1. Elementary and specialized vectors and matrices.

zeros Zeros array
ones Ones array
eye Identity matrix
rand Uniformly distributed random numbers
randn Normally distributed random numbers
gallery Test matrices
linspace Linearly spaced vector

Table A.2. Special variables and functions.

ans Most recent answer
eps Floating-point relative accuracy
i, j Imaginary unit (

√
−1)

inf ∞
NaN Not a Number
pi π

439

440 The Top 111 MATLAB Functions

Table A.3. Array information and manipulation.

size Array dimensions
length Length of array (size of longest dimension)
reshape Change size of array
: Regularly spaced vector and index into matrix
end Last index in an indexing expression
diag Diagonal matrices and diagonals of matrix
tril Extract lower triangular part
triu Extract upper triangular part
repmat Replicate and tile array

Table A.4. Logical operators.

all Test for all nonzeros
any Test for any nonzeros
find Find indices of nonzero elements
isempty Test for empty array
isequal Test if arrays are equal

Table A.5. Flow control.

error Display error message and abort function
for Repeat statements a specific number of times
if Conditionally execute statements
switch, case Choose among several cases
while Repeat statements indefinitely

Table A.6. Basic data analysis.

max Largest component
min Smallest component
mean Average or mean value
std Standard deviation
sum Sum of elements
prod Product of elements
sort Sort elements

The Top 111 MATLAB Functions 441

Table A.7. Graphics.

plot x–y plot
fplot Function plotter
semilogy Plot with logarithmically scaled y-axis
bar Bar graph
histogram Histogram
axis Axis control
xlim Set x-axis limits
ylim Set y-axis limits
grid Grid lines
xlabel Label x-axis
ylabel Label y-axis
title Title graph
legend Display legend
text Text annotation
subplot Create axes in grid pattern
hold Hold current graph
contour Contour plot
mesh Wireframe surface
surf Solid surface
colormap Set color map
spy Visualize sparsity pattern
print Print figure
clf Clear current figure
shg Make current figure visible
close Close figure

Table A.8. Linear algebra.

norm Norm of vector or matrix
cond Condition number of matrix (with respect to inversion)
\ Solve linear system of equations
eig Eigenvalues and eigenvectors
lu LU factorization
qr QR factorization
svd Singular value decomposition

Table A.9. Functions connected with program files.

edit Invoke MATLAB editor
lookfor Search H1 line (first comment line) of all program files for keyword
nargin Number of function input arguments
nargout Number of function output arguments
type List file in Command Window
which Display full pathname of MATLAB file

442 The Top 111 MATLAB Functions

Table A.10. Miscellaneous.

clc Clear Command Window
demo Demonstrations
diary Save Command Window text to file
dir Display directory listing
doc Display HTML documentation in Help browser
help Display help in Command Window
tic, toc Start/stop stopwatch timer
what List MATLAB files in current directory grouped by type

Table A.11. Data types and conversions.

double Convert to double precision
char Create or convert to character array (string)
cell Create cell array
num2str Convert number to string
sparse Create sparse matrix
struct Create or convert to structure array

Table A.12. Managing the workspace.

clear Clear items from workspace
who, whos List variables in workspace
load Load workspace variables from disk
save Save workspace variables to disk
exit, quit Terminate MATLAB session

Table A.13. Input and output.

disp Display text or array
format Set output format
fprintf Write formatted data to screen or file
sprintf Write formatted data to string
input Prompt for user input

The Top 111 MATLAB Functions 443

Table A.14. Numerical methods.

bvp4c Solve two-point boundary-value problem
fft Discrete Fourier transform
fminbnd Minimize function of one variable on fixed interval
fzero Find zero of function of one variable
integral Numerical integration
interp1 One-dimensional interpolation (several methods)
ode45 Explicit Runge–Kutta pair for nonstiff differential equations
polyfit Least-squares polynomial fit
roots Roots of polynomial
spline Cubic spline interpolation

Glossary

Array Editor. A tool allowing array contents to be viewed and edited in tabular
format.

class. A class describes a set of objects with a common set of properties and the
operations that can be performed on the data within the properties.

Command History. A tool that lists MATLAB commands previously typed in the
current and past sessions and allows them to be copied or executed.

Command Window. The window in which the MATLAB prompt >> appears and
in which commands are typed. It is part of the MATLAB desktop.

Current Folder browser. A browser for viewing program files and other files and
performing operations on them.

Editor/Debugger. A tool for creating, editing, and debugging program files.

FIG-file. A file with a .fig extension that contains a representation of a figure that
can be reloaded into MATLAB.

figure. A MATLAB window for displaying graphics.

function. A program file with a .m extension that can accept input arguments and
return output arguments and whose variables are local to the function.

Help browser. A browser that allows you to view and search the documentation for
MATLAB and other MathWorks products.

IEEE arithmetic. A standard for floating-point arithmetic [87], [88] to which the
arithmetic in MATLAB conforms.

LAPACK. A Fortran 77 library of programs for linear equation, least-squares, eigen-
value, and singular value computations [3]. Many of the MATLAB linear algebra
functions are based on LAPACK.

Live Editor. An interactive environment for editing and running MATLAB code
that allows you to see your results together with the code that produced them.

live script. A program file with a .mlx extension that contains MATLAB commands
and the output they produce. It is created and edited in the Live Editor.

MAT-file. A file with a .mat extension that contains MATLAB variables. Created
and accessed with the save and load commands.

MATLAB desktop. A user interface for managing files, tools, and applications
associated with MATLAB.

445

446 Glossary

MATLAB Toolstrip. The strip or ribbon of tools, organized in several tabs, that
appears at the top of the desktop. The tabs can be opened up or collapsed by
clicking the icon containing a triangle located at the top right-hand corner of
the desktop.

MATLAB Web browser. A web browser that is part of the MATLAB system.
Used for displaying profile reports, for example.

MEX-file. A subroutine produced from C, C++, or Fortran code whose name has a
platform-specific extension. It behaves like a program file or built-in function.

program file. A file that contains a sequence of MATLAB commands. It is of one
of four types: a function, a script, a live script, or a file defining a class.

script. A program file with a .m extension that takes no input or output arguments
and operates on data in the workspace.

toolbox. A collection of program files that extends the capabilities of MATLAB,
usually in a particular application area.

Workspace browser. A browser that allows the contents of the workspace to be
viewed and managed.

Bibliography

[1] Forman S. Acton. Numerical Methods That Work. Harper and Row, New York, 1970.
xviii+541 pp. Reprinted by Mathematical Association of America, Washington, D.C.,
with new preface and additional problems, 1990. ISBN 0-88385-450-3. (Cited on
pp. 158, 187.)

[2] Yair Altman. Accelerating MATLAB Performance. 1101 Tips to Speed up MATLAB
Programs. CRC Press, Boca Raton, FL, USA, 2015. xxv+743 pp. ISBN 978-1-4822-
1129-0. (Cited on p. 369.)

[3] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. J.
Du Croz, A. Greenbaum, S. J. Hammarling, A. McKenney, and D. C. Sorensen. LA-
PACK Users’ Guide. Third edition, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1999. xxvi+407 pp. ISBN 0-89871-447-8. (Cited on pp. 135,
445.)

[4] Mary Aprahamian and Nicholas J. Higham. Matrix inverse trigonometric and inverse
hyperbolic functions: Theory and algorithms. SIAM J. Matrix Anal. Appl., 37(4):
1453–1477, 2016. (Cited on p. 269.)

[5] Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1998. xvii+314 pp. ISBN 0-89871-412-5. (Cited
on p. 210.)

[6] Russell Ash. The Top 10 of Everything. Dorland Kindersley, London, 1994. 288 pp.
ISBN 0-7513-0137-X. (Cited on p. 289.)

[7] Kendall E. Atkinson. An Introduction to Numerical Analysis. Second edition, Wiley,
New York, 1989. xvi+693 pp. ISBN 0-471-50023-2. (Cited on pp. 175, 191, 192.)

[8] Zhaojun Bai, James W. Demmel, Jack J. Dongarra, Axel Ruhe, and Henk A. Van der
Vorst, editors. Templates for the Solution of Algebraic Eigenvalue Problems: A Prac-
tical Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2000. xxix+410 pp. ISBN 0-89871-471-0. (Cited on p. 135.)

[9] Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June Donato, Jack
Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der Vorst.
Templates for the Solution of Linear Systems: Building Blocks for Iterative Meth-
ods. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1994.
xiii+112 pp. ISBN 0-89871-328-5. (Cited on p. 154.)

[10] Jon L. Bentley. Programming Pearls. Addison-Wesley, Reading, MA, USA, 1986.
viii+195 pp. ISBN 0-201-10331-1. (Cited on p. 243.)

[11] Jon L. Bentley. More Programming Pearls: Confessions of a Coder. Addison-Wesley,
Reading, MA, USA, 1988. viii+207 pp. ISBN 0-201-11889-0. (Cited on p. 133.)

[12] David Borland and Russell M. Taylor II. Rainbow color map (still) considered harmful.
IEEE Computer Graphics and Applications, 27(2):14–17, 2007. (Cited on p. 119.)

[13] Folkmar Bornemann, Dirk Laurie, Stan Wagon, and Jörg Waldvogel. The SIAM 100-
Digit Challenge: A Study in High-Accuracy Numerical Computing. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, 2004. xi+306 pp. ISBN
0-89871-561-X. (Cited on p. 419.)

447

448 Bibliography

[14] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1996. x+256 pp. Corrected republication of work
first published in 1989 by North-Holland, New York. ISBN 0-89871-353-6. (Cited on
p. 210.)

[15] David S. Broomhead. Applications of max-plus algebra. In [83], pages 795–800. (Cited
on p. 315.)

[16] A. Buchheim. On the theory of matrices. Proc. London Math. Soc., 16:63–82, 1884.
(Cited on p. 140.)

[17] Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente. Introduction to Derivative-
Free Optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2009. xii+277 pp. ISBN 978-0-898716-68-9. (Cited on p. 185.)

[18] James W. Cooley. How the FFT gained acceptance. In A History of Scientific Com-
puting, Stephen G. Nash, editor, Addison-Wesley, Reading, MA, USA, 1990, pages
133–140. (Cited on p. 186.)

[19] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of
complex Fourier series. Math. Comp., 19(90):297–301, 1965. (Cited on p. 186.)

[20] Robert M. Corless. Essential Maple 7: An Introduction for Scientific Programmers.
Springer-Verlag, New York, 2002. xv+282 pp. ISBN 0-387-95352-3. (Cited on p. 348.)

[21] Robert M. Corless and Nicolas Fillion. A Graduate Introduction to Numerical Meth-
ods From the Viewpoint of Backward Error Analysis. Springer-Verlag, London, 2013.
xxxix+868 pp. ISBN 978-1-4614-8452-3. (Cited on p. 175.)

[22] Tony Crilly. The appearance of set operators in Cayley’s group theory. Notices of the
South African Mathematical Society, 31:9–22, 2000. (Cited on p. 140.)

[23] Germund Dahlquist and Åke Björck. Numerical Methods. Prentice-Hall, Englewood
Cliffs, NJ, USA, 1974. xviii+573 pp. Translated by Ned Anderson. ISBN 0-13-627315-
7. (Cited on pp. 175, 191.)

[24] Harold T. Davis. Introduction to Nonlinear Differential and Integral Equations. Dover,
New York, 1962. xv+566 pp. ISBN 0-486-60971-5. (Cited on p. 201.)

[25] Timothy A. Davis. SuiteSparse: A suite of sparse matrix software. http://faculty.

cse.tamu.edu/davis/suitesparse.html. (Cited on p. 252.)

[26] Timothy A. Davis. Algorithm 832: UMFPACK V4.3—An unsymmetric-pattern multi-
frontal method. ACM Trans. Math. Software, 30(2):196–199, 2004. (Cited on p. 252.)

[27] Timothy A. Davis. Direct Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2006. xii+217 pp. ISBN 0-89871-
613-6. (Cited on p. 249.)

[28] Timothy A. Davis. Algorithm 930: FACTORIZE: An object-oriented linear system
solver for MATLAB. ACM Trans. Math. Software, 39(4):28:1–28:18, 2013. (Cited on
pp. 158, 324.)

[29] Timothy A. Davis, Sivasankaran Rajamanickam, and Wissam M. Sid-Lakhdar. A
survey of direct methods for sparse linear systems. Acta Numerica, 25:383–566, 2016.
(Cited on p. 249.)

[30] Edvin Deadman and Nicholas J. Higham. Testing matrix function algorithms using
identities. ACM Trans. Math. Software, 42(1):4:1–4:15, 2016. (Cited on p. 269.)

[31] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1997. xi+419 pp. ISBN 0-89871-389-7.
(Cited on p. 135.)

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html

Bibliography 449

[32] James W. Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet,
Richard Vuduc, R. Clint Whaley, and Katherine Yellick. Self-adapting linear algebra
algorithms and software. Proc. IEEE, 93(2):293–312, 2005. (Cited on p. 186.)

[33] Edsger W. Dijkstra. On the cruelty of really teaching computing science. https:

//www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1036.html, Decem-
ber 1998. (Cited on p. 272.)

[34] Nicholas J. Dingle and Nicholas J. Higham. Reducing the influence of tiny normwise
relative errors on performance profiles. ACM Trans. Math. Software, 39(4):24:1–24:11,
2013. (Cited on p. 416.)

[35] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with
performance profiles. Math. Programming, 91:201–213, 2002. (Cited on pp. 410,
437.)

[36] Jack J. Dongarra and Francis Sullivan. Introduction to the top 10 algorithms. Com-
puting in Science and Engineering, 2(1):22–23, 2000. (Cited on p. 187.)

[37] David L. Donoho and Victoria Stodden. Reproducible research in the mathematical
sciences. In [83], pages 916–925. (Cited on p. 49.)

[38] Tobin A. Driscoll, Nicholas Hale, and Lloyd N. Trefethen. Chebfun Guide. Pafnuty
Publications, Oxford, 2014. (Cited on pp. 315, 324.)

[39] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford
University Press, 1986. xiii+341 pp. ISBN 0-19-853408-6. (Cited on p. 255.)

[40] Iain S. Duff. MA57—A code for the solution of sparse symmetric definite and indefinite
systems. ACM Trans. Math. Software, 30(2):118–144, 2004. (Cited on p. 252.)

[41] Steven L. Eddins. Automated software testing for MATLAB. Computing in Science
and Engineering, 11(6):48–54, 2009. (Cited on p. 272.)

[42] Steven L. Eddins. Rainbow color map critiques: An overview and annotated bibli-
ography. http://mathworks.com/company/newsletters/articles/rainbow-color-

map-critiques-an-overview-and-annotated-bibliography.html, 2014. (Cited on
p. 119.)

[43] Alan Edelman. Eigenvalue roulette and random test matrices. In Linear Algebra for
Large Scale and Real-Time Applications, Marc S. Moonen, Gene H. Golub, and Bart
L. De Moor, editors, volume 232 of NATO ASI Series E, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1993, pages 365–368. (Cited on pp. 83, 84.)

[44] Alan Edelman, Eric Kostlan, and Michael Shub. How many eigenvalues of a random
matrix are real? J. Amer. Math. Soc., 7(1):247–267, 1994. (Cited on p. 84.)

[45] Mark Embree and Lloyd N. Trefethen. Growth and decay of random Fibonacci se-
quences. Proc. Roy. Soc. London Ser. A, 455:2471–2485, 1999. (Cited on p. 8.)

[46] Bengt Fornberg. A Practical Guide to Pseudospectral Methods. Cambridge University
Press, Cambridge, UK, 1995. x+231 pp. ISBN 0-521-49582-2. (Cited on p. 282.)

[47] George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler. Computer Methods for
Mathematical Computations. Prentice-Hall, Englewood Cliffs, NJ, USA, 1977. xi+259
pp. ISBN 0-13-165332-6. (Cited on pp. 175, 184.)

[48] Linton C. Freeman. Going the wrong way down a one-way street: Centrality in physics
and biology. J. Social Structure, 9, 2008. (Cited on p. 359.)

[49] Matteo Frigo and Steven G. Johnson. FFTW. http://www.fftw.org/. (Cited on
p. 186.)

[50] C. W. Gear and R. D. Skeel. The development of ODE methods: A symbiosis between
hardware and numerical analysis. In A History of Scientific Computing, Stephen G.
Nash, editor, Addison-Wesley, Reading, MA, USA, 1990, pages 88–105. (Cited on
p. 213.)

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1036.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1036.html
http://mathworks.com/company/newsletters/articles/rainbow-color-map-critiques-an-overview-and-annotated-bibliography.html
http://mathworks.com/company/newsletters/articles/rainbow-color-map-critiques-an-overview-and-annotated-bibliography.html
http://www.fftw.org/

450 Bibliography

[51] Stuart Geman. The spectral radius of large random matrices. Ann. Probab., 14(4):
1318–1328, 1986. (Cited on p. 390.)

[52] John R. Gilbert, Cleve B. Moler, and Robert S. Schreiber. Sparse matrices in
MATLAB: Design and implementation. SIAM J. Matrix Anal. Appl., 13(1):333–356,
1992. (Cited on p. 255.)

[53] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Fourth edition, Johns
Hopkins University Press, Baltimore, MD, USA, 2013. xxi+756 pp. ISBN 978-1-4214-
0794-4. (Cited on pp. 57, 135, 146, 322.)

[54] Anne Greenbaum. Iterative Methods for Solving Linear Systems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1997. xiii+220 pp. ISBN 0-89871-
396-X. (Cited on p. 154.)

[55] David F. Griffiths, John W. Dold, and David J. Silvester. Essential Partial Differential
Equations: Analytical and Computational Aspects. Springer-Verlag, London, 2015.
xi+368 pp. ISBN 978-3-319-22568-5. (Cited on p. 175.)

[56] David F. Griffiths and Desmond J. Higham. Numerical Methods for Ordinary Differ-
ential Equations. Springer-Verlag, London, 2010. x+271 pp. ISBN 978-0-85729-147-9.
(Cited on pp. 175, 195.)

[57] David F. Griffiths and Desmond J. Higham. Learning LATEX. Second edition, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2016. x+103 pp.
ISBN 978-1-611974-41-6. (Cited on pp. 106, 109, 130.)

[58] Peter Grindrod. Mathematical Underpinnings of Analytics. Theory and Applications.
Oxford University Press, New York, 2015. xiii+261 pp. ISBN 978-0-19-872509-1.
(Cited on p. 367.)

[59] Ned Gulley. In praise of tweaking: A wiki-like programming contest. Interactions, 11
(3):18–23, 2004. (Cited on p. 386.)

[60] E. Hairer and G. Wanner. Analysis by Its History. Springer-Verlag, New York, 1996.
x+374 pp. ISBN 0-387-94551-2. (Cited on p. 191.)

[61] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems. Second edition, Springer-Verlag, Berlin, 1996. xv+614
pp. ISBN 3-540-60452-9. (Cited on pp. 205, 231.)

[62] Leonard Montague Harrod, editor. Indexers on Indexing: A Selection of Articles
Published in The Indexer. R. K. Bowker, London, 1978. x+430 pp. ISBN 0-8352-
1099-5. (Cited on p. 452.)

[63] Bernd Heidergott, Geert Jan Olsder, and Jacob van der Woude. Max Plus at Work.
Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and
Its Applications. Princeton University Press, Princeton, NJ, USA, 2006. xi+213 pp.
ISBN 978-0-691-11763-8. (Cited on p. 315.)

[64] Piet Hein. Grooks. Number 85 in Borgens Pocketbooks. Second edition, Borgens Forlag,
Copenhagen, Denmark, 1992. 53 pp. First published in 1966. ISBN 87-418-1079-1.
(Cited on p. 248.)

[65] Kurt Hensel. Über den Zusammenhang zwischen den Systemen und ihren Determi-
nanten. J. Reine Angew. Math., 159(4):246–254, 1928. (Cited on p. 140.)

[66] Desmond J. Higham. Nine ways to implement the binomial method for option valuation
in MATLAB. SIAM Rev., 44(4):661–677, 2002. (Cited on p. 375.)

[67] Desmond J. Higham. An Introduction to Financial Option Valuation: Mathematics,
Stochastics and Computation. Cambridge University Press, Cambridge, UK, 2004.
xxi+273 pp. ISBN 0-521-83884-3. (Cited on pp. 133, 424.)

[68] Nicholas J. Higham. Algorithm 694: A collection of test matrices in MATLAB. ACM
Trans. Math. Software, 17(3):289–305, 1991. (Cited on p. 51.)

Bibliography 451

[69] Nicholas J. Higham. The Test Matrix Toolbox for MATLAB (version 3.0). Numer-
ical Analysis Report No. 276, Manchester Centre for Computational Mathematics,
Manchester, England, September 1995. 70 pp. (Cited on p. 51.)

[70] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second edi-
tion, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002.
xxx+680 pp. ISBN 0-89871-521-0. (Cited on pp. 39, 42, 55, 144, 282.)

[71] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008. xx+425 pp. ISBN
978-0-898716-46-7. (Cited on p. 158.)

[72] Nicholas J. Higham. Sylvester’s influence on applied mathematics. Mathematics Today,
50(4):202–206, 2014. (Cited on p. 358.)

[73] Nicholas J. Higham. Color spaces and digital imaging. In [83], pages 808–813. (Cited
on p. 99.)

[74] Nicholas J. Higham. Functions of matrices. In [83], pages 97–99. (Cited on p. 158.)

[75] Nicholas J. Higham. Numerical linear algebra and matrix analysis. In [83], pages
263–281. (Cited on p. 135.)

[76] Nicholas J. Higham. Programming languages: An applied mathematics view. In [83],
pages 828–839. (Cited on p. 259.)

[77] Nicholas J. Higham. The singular value decomposition. In [83], pages 126–127. (Cited
on p. 146.)

[78] Nicholas J. Higham. Iterating MATLAB commands. https://nickhigham.

wordpress.com/2016/05/13/iterating-matlab-commands, May 2016. (Cited on
p. 94.)

[79] Nicholas J. Higham. The one-line maze program in MATLAB. https://nickhigham.
wordpress.com/2016/06/29/the-one-line-maze-program-in-matlab, June 2016.
(Cited on p. 295.)

[80] Nicholas J. Higham. The top 10 algorithms in applied mathematics.
https://nickhigham.wordpress.com/2016/03/29/the-top-10-algorithms-in-

applied-mathematics, March 2016. (Cited on p. 187.)

[81] Nicholas J. Higham and Awad H. Al-Mohy. Computing matrix functions. Acta Nu-
merica, 19:159–208, 2010. (Cited on p. 158.)

[82] Nicholas J. Higham and Edvin Deadman. A catalogue of software for matrix functions.
Version 2.0. MIMS EPrint 2016.3, Manchester Institute for Mathematical Sciences,
The University of Manchester, UK, January 2016. 22 pp. Updated March 2016. (Cited
on p. 158.)

[83] Nicholas J. Higham, Mark R. Dennis, Paul Glendinning, Paul A. Martin, Fadil San-
tosa, and Jared Tanner, editors. The Princeton Companion to Applied Mathematics.
Princeton University Press, Princeton, NJ, USA, 2015. xvii + 994 + 16 color plates
pp. ISBN 978-0-691-15039-0. (Cited on pp. 187, 448, 449, 451.)

[84] Nicholas J. Higham and Françoise Tisseur. A block algorithm for matrix 1-norm
estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl.,
21(4):1185–1201, 2000. (Cited on p. 137.)

[85] Francis B. Hildebrand. Advanced Calculus for Applications. Second edition, Prentice-
Hall, Englewood Cliffs, NJ, USA, 1976. xiii+733 pp. ISBN 0-13-011189-9. (Cited on
p. 217.)

[86] Doug Hoyte. Let Over Lambda. 50 Years of Lisp. http://letoverlambda.com, 2008.
iv+376 pp. ISBN 978-1-4357-1275-1. (Cited on p. 174.)

https://nickhigham.wordpress.com/2016/05/13/iterating-matlab-commands
https://nickhigham.wordpress.com/2016/05/13/iterating-matlab-commands
https://nickhigham.wordpress.com/2016/06/29/the-one-line-maze-program-in-matlab
https://nickhigham.wordpress.com/2016/06/29/the-one-line-maze-program-in-matlab
https://nickhigham.wordpress.com/2016/03/29/the-top-10-algorithms-in-applied-mathematics
https://nickhigham.wordpress.com/2016/03/29/the-top-10-algorithms-in-applied-mathematics
http://letoverlambda.com

452 Bibliography

[87] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.
Institute of Electrical and Electronics Engineers, New York, 1985. Reprinted in SIG-
PLAN Notices, 22(2):9–25, 1987. (Cited on pp. 39, 445.)

[88] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008 (revision of IEEE
Std 754-1985). IEEE Computer Society, New York, 2008. 58 pp. ISBN 978-0-7381-
5752-8. (Cited on pp. 39, 445.)

[89] D. S. Jones and B. D. Sleeman. Differential Equations and Mathematical Biology. CRC
Press, Boca Raton, FL, USA, 2003. 408 pp. ISBN 1-58488-296-4. (Cited on pp. 227,
229.)

[90] William M. Kahan. Handheld calculator evaluates integrals. Hewlett-Packard Journal,
31(8):23–32, 1980. (Cited on p. 231.)

[91] David K. Kahaner, Cleve B. Moler, and Stephen G. Nash. Numerical Methods and
Software. Prentice-Hall, Englewood Cliffs, NJ, USA, 1989. xii+495 pp. ISBN 0-13-
627258-4. (Cited on p. 175.)

[92] Irving Kaplansky. Reminiscences. In Paul Halmos: Celebrating 50 Years of Mathemat-
ics, John H. Ewing and F. W. Gehring, editors, Springer-Verlag, Berlin, 1991, pages
87–89. (Cited on p. 158.)

[93] Roger Emanuel Kaufman. A FORTRAN Coloring Book. The MIT Press, Cambridge,
MA, USA, 1978. ISBN 0-262-61026-4. (Cited on pp. 82, 174, 240.)

[94] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1995. xiii+165 pp. ISBN
0-89871-352-8. (Cited on p. 154.)

[95] C. T. Kelley. Iterative Methods for Optimization. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1999. xv+180 pp. ISBN 0-89871-433-8. (Cited
on p. 185.)

[96] C. T. Kelley. Solving Nonlinear Equations with Newton’s Method. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2003. xiii+104 pp. ISBN 0-89871-
546-6. (Cited on p. 181.)

[97] Brian W. Kernighan and P. J. Plauger. The Elements of Programming Style. Second
edition, McGraw-Hill, New York, 1978. xii+168 pp. ISBN 0-07-034207-5. (Cited on
pp. 95, 174, 240, 248, 272, 378.)

[98] Jacek Kierzenka. Tutorial on solving BVPs with BVP4C, 2016. https://mathworks.

com/matlabcentral/fileexchange/3819-tutorial-on-solving-bvps-with-bvp4c.
(Cited on pp. 220, 455.)

[99] Jacek Kierzenka. Tutorial on solving DDEs with DDE23, 2016. http://mathworks.

com/matlabcentral/fileexchange/3899-tutorial-on-solving-ddes-with-dde23.
(Cited on p. 223.)

[100] Jacek A. Kierzenka and Lawrence F. Shampine. A BVP solver based on residual
control and the MATLAB PSE. ACM Trans. Math. Software, 27(3):229–316, 2001.
(Cited on p. 220.)

[101] Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential
Equations. Springer-Verlag, Berlin, 1992. xxxv+632 pp. ISBN 3-540-54062-8. (Cited
on p. 372.)

[102] G. Norman Knight. Book indexing in Great Britain: A brief history. The Indexer, 6
(1):14–18, 1968. Reprinted in [62, pp. 9–13]. (Cited on p. 459.)

[103] Donald E. Knuth. Structured programming with go to statements. Computing Sur-
veys, 6(4):261–301, 1974. Reprinted in [105]. (Cited on p. 272.)

[104] Donald E. Knuth. The TEXbook. Addison-Wesley, Reading, MA, USA, 1986. ix+483
pp. ISBN 0-201-13448-9. (Cited on p. 106.)

https://mathworks.com/matlabcentral/fileexchange/3819-tutorial-on-solving-bvps-with-bvp4c
https://mathworks.com/matlabcentral/fileexchange/3819-tutorial-on-solving-bvps-with-bvp4c
http://mathworks.com/matlabcentral/fileexchange/3899-tutorial-on-solving-ddes-with-dde23
http://mathworks.com/matlabcentral/fileexchange/3899-tutorial-on-solving-ddes-with-dde23

Bibliography 453

[105] Donald E. Knuth. Literate Programming. CSLI Lecture Notes Number 27. Center
for the Study of Language and Information, Stanford University, Stanford, CA, USA,
1992. xv+368 pp. ISBN 0-9370-7380-6. (Cited on p. 452.)

[106] Donald E. Knuth. Digital Typography. CSLI Lecture Notes Number 78. Center for the
Study of Language and Information, Stanford University, Stanford, CA, USA, 1999.
xv+685 pp. ISBN 0-57586-010-4. (Cited on p. 134.)

[107] Helmut Kopka and Patrick W. Daly. Guide to LATEX. Fourth edition, Addison-Wesley,
Boston, MA, USA, 2004. xii+597 pp. ISBN 0-321-17385-6. (Cited on pp. 106, 109,
130.)

[108] Arnold R. Krommer and Christoph W. Ueberhuber. Computational Integration. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1998. xix+445
pp. ISBN 0-89871-374-9. (Cited on p. 348.)

[109] Peter Kunkel and Volker Mehrmann. Differential-Algebraic Equations: Analysis and
Numerical Solution. European Mathematical Society, Zurich, Switzerland, 2006.
viii+377 pp. ISBN 3-03719-017-5. (Cited on p. 210.)

[110] Peter Laflin. Leeds’ role in the data revolution. http://www.leedsdatathing.co.

uk/data-in-a-day/data-in-a-day-peter-laflin-on-leeds-role-in-the-data-

revolution, April 2013. (Cited on p. 367.)

[111] Jeffrey C. Lagarias. The 3x+1 problem and its generalizations. Amer. Math. Monthly,
92(1):3–23, 1985. (Cited on p. 10.)

[112] Leslie Lamport. LATEX: A Document Preparation System. User’s Guide and Reference
Manual. Second edition, Addison-Wesley, Reading, MA, USA, 1994. xvi+272 pp.
ISBN 0-201-52983-1. (Cited on pp. 106, 109, 130.)

[113] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of
Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1998. xv+142 pp.
ISBN 0-89871-407-9. (Cited on p. 155.)

[114] F. M. Leslie. Liquid crystal devices. Technical report, Institute Wiskundige Dienstver-
lening, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 1992. (Cited
on p. 216.)

[115] Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time-Dependent Problems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2007. xv+341 pp. ISBN 978-0-898716-
29-0. (Cited on p. 175.)

[116] Shangzhi Li, Falai Chen, Yaohua Wu, and Yunhua Zhang. Mathematics Experiments.
World Scientific, New Jersey, USA, 2003. ix+217 pp. ISBN 978-981-238-049-4. (Cited
on p. 404.)

[117] J. N. Lyness and J. J. Kaganove. Comments on the nature of automatic quadrature
routines. ACM Trans. Math. Software, 2(1):65–81, 1976. (Cited on p. 410.)

[118] Tom Marchioro. Putting math to work: An interview with Cleve Moler. Computing
in Science and Engineering, 1(4):10–13, 1999. (Cited on p. 37.)

[119] Annik Martin and Shigui Ruan. Predator-prey models with delay and prey harvesting.
J. Math. Biol., 43:247–267, 2001. (Cited on p. 221.)

[120] Thomas J. McCabe. A complexity measure. IEEE Trans. Software Engrg., SE-2(4):
308–320, 1976. (Cited on p. 259.)

[121] Cleve B. Moler. Demonstration of a matrix laboratory. In Numerical Analysis, Mexico
1981, J. P. Hennart, editor, volume 909 of Lecture Notes in Mathematics, Springer-
Verlag, Berlin, 1982, pages 84–98. (Cited on p. 37.)

http://www.leedsdatathing.co.uk/data-in-a-day/data-in-a-day-peter-laflin-on-leeds-role-in-the-data-revolution
http://www.leedsdatathing.co.uk/data-in-a-day/data-in-a-day-peter-laflin-on-leeds-role-in-the-data-revolution
http://www.leedsdatathing.co.uk/data-in-a-day/data-in-a-day-peter-laflin-on-leeds-role-in-the-data-revolution

454 Bibliography

[122] Cleve B. Moler. MATLAB users’ guide. Technical Report CS81-1 (revised), Depart-
ment of Computer Science, University of New Mexico, Albuquerque, New Mexico,
August 1982. 60 pp. (Cited on pp. 33, 437.)

[123] Cleve B. Moler. Yet another look at the FFT. The MathWorks Newsletter, 1992.
(Cited on p. 102.)

[124] Cleve B. Moler. MATLAB’s magical mystery tour. The MathWorks Newsletter, 7(1):
8–9, 1993. (Cited on p. 51.)

[125] Cleve B. Moler. Objectively speaking. OOPS is not an apology. MATLAB News and
Notes, pages 6–7, 1999. (Cited on p. 324.)

[126] Cleve B. Moler. Parallel MATLAB: Multiple processors and multiple cores. The
MathWorks News and Notes, pages 26–28, 2007. (Cited on p. 401.)

[127] Cleve B. Moler. Backslash. http://blogs.mathworks.com/cleve/2013/08/19/

backslash, August 2013. (Cited on p. 140.)

[128] Cleve B. Moler. Modernization of numerical integration, from quad to
integral. http://blogs.mathworks.com/cleve/2016/05/23/modernization-of-

numerical-integration-from-quad-to-integral, May 2016. (Cited on p. 191.)

[129] Cleve B. Moler and Donald Morrison. Replacing square roots by Pythagorean sums.
IBM J. Res. Develop., 27(6):577–581, 1983. (Cited on p. 430.)

[130] Nick Montfort, Patsy Baudoin, John Bell, Ian Bogost, Jeremy Douglass, Mark C.
Marino, Michael Mateas, Casey Reas, Mark Sample, and Noah Vawter. 10 PRINT

CHR$(205.5+RND(1)); : GOTO 10. The MIT Press, Cambridge, MA, USA, 2013.
xi+309 pp. ISBN 978-0-262-01846-3. (Cited on p. 295.)

[131] J. D. Murray. Mathematical Biology I. An Introduction. Springer-Verlag, Berlin, 2002.
xxiii+551 pp. ISBN 0-387-95223-3. (Cited on p. 434.)

[132] Noël M. Nachtigal, Satish C. Reddy, and Lloyd N. Trefethen. How fast are nonsym-
metric matrix iterations? SIAM J. Matrix Anal. Appl., 13(3):778–795, 1992. (Cited
on p. 437.)

[133] Salih N. Neftci. An Introduction to the Mathematics of Financial Derivatives. Second
edition, Academic Press, San Diego, CA, USA, 2000. xxvii+527 pp. ISBN 0-12-515392-
9. (Cited on p. 226.)

[134] Richard D. Neidinger. Introduction to automatic differentiation and MATLAB object-
oriented programming. SIAM Rev., 52(3):545–563, 2010. (Cited on p. 324.)

[135] M. E. J. Newman, C. Moore, and D. J. Watts. Mean-field solution of the small-world
network model. Physical Review Letters, 84:3201–3204, 2000. (Cited on p. 406.)

[136] J. R. Norris. Markov Chains. Cambridge University Press, Cambridge, UK, 1997.
ISBN 0-521-48181-3. (Cited on p. 427.)

[137] Michael L. Overton. Numerical Computing with IEEE Floating Point Arithmetic: In-
cluding One Theorem, One Rule of Thumb, and One Hundred and One Exercises. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001. xiv+104
pp. ISBN 0-89871-482-6. (Cited on p. 39.)

[138] Karen Hunger Parshall. James Joseph Sylvester. Life and Work in Letters. Oxford
University Press, 1998. xv+321 pp. ISBN 0-19-850391-1. (Cited on p. 140.)

[139] Heinz-Otto Peitgen, Hartmut Jürgens, and Dietmar Saupe. Fractals for the Classroom.
Part One: Introduction to Fractals and Chaos. Springer-Verlag, New York, 1992.
xiv+450 pp. ISBN 0-387-97041-X. (Cited on pp. 12, 18, 119, 170.)

[140] Heinz-Otto Peitgen, Hartmut Jürgens, and Dietmar Saupe. Fractals for the Classroom.
Part Two: Complex Systems and Mandelbrot Set. Springer-Verlag, New York, 1992.
xii+500 pp. ISBN 0-387-97722-8. (Cited on p. 12.)

http://blogs.mathworks.com/cleve/2013/08/19/backslash
http://blogs.mathworks.com/cleve/2013/08/19/backslash
http://blogs.mathworks.com/cleve/2016/05/23/modernization-of-numerical-integration-from-quad-to-integral
http://blogs.mathworks.com/cleve/2016/05/23/modernization-of-numerical-integration-from-quad-to-integral

Bibliography 455

[141] E. Pitts. The stability of pendent liquid drops. Part 1. Drops formed in a narrow gap.
J. Fluid Mech., 59(4):753–767, 1973. (Cited on p. 214.)

[142] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in FORTRAN: The Art of Scientific Computing. Second edition,
Cambridge University Press, Cambridge, UK, 1992. xxvi+963 pp. ISBN 0-521-43064-
X. (Cited on p. 185.)

[143] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of
Plants. Springer-Verlag, Berlin, 1990. ISBN 0387-97297-8. (Cited on p. 421.)

[144] A Million Random Digits with 100, 000 Normal Deviates. RAND, Santa Monica, CA,
USA, 2001. Reprint of work originally published in 1955 by The Free Press, Glencoe,
Illinois. ISBN 978-0833030474. (Cited on p. 7.)

[145] Yousef Saad. Iterative Methods for Sparse Linear Systems. Second edition, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003. xviii+528 pp.
ISBN 0-89871-534-2. (Cited on p. 154.)

[146] Robert Sedgewick. Algorithms. Second edition, Addison-Wesley, Reading, MA, USA,
1988. xii+657 pp. ISBN 0-201-06673-4. (Cited on p. 314.)

[147] Peter Seibel. Coders at Work: Reflections on the Craft of Programming. Apress,
Oxford, 2009. xiii+617 pp. ISBN 978-1-4302-1948-4. (Cited on p. 272.)

[148] Lawrence F. Shampine. Numerical Solution of Ordinary Differential Equations. Chap-
man and Hall, New York, 1994. x+484 pp. ISBN 0-412-05151-6. (Cited on pp. 195,
197, 205, 375.)

[149] Lawrence F. Shampine. Solving 0 = F (t, y(t), y′(t)) in MATLAB. Journal of Numerical
Mathematics, 10(4):291–310, 2002. (Cited on p. 213.)

[150] Lawrence F. Shampine. Singular boundary value problems for ODEs. Appl. Math.
Comput., 138(1):99–112, 2003. (Cited on p. 220.)

[151] Lawrence F. Shampine, Richard C. Allen, Jr., and Steven Pruess. Fundamentals of
Numerical Computing. Wiley, New York, 1997. x+268 pp. ISBN 0-471-16363-5. (Cited
on pp. 175, 191, 192.)

[152] Lawrence F. Shampine, Ian Gladwell, and S. Thompson. Solving ODEs with MATLAB.
Cambridge University Press, Cambridge, UK, 2003. viii+263 pp. ISBN 0-521-53094-6.
(Cited on p. 223.)

[153] Lawrence F. Shampine, Jacek A. Kierzenka, and Mark W. Reichelt. Solving boundary
value problems for ordinary differential equations in MATLAB with bvp4c, 2000. In
[98]. 27 pp. (Cited on p. 231.)

[154] Lawrence F. Shampine and Mark W. Reichelt. The MATLAB ODE suite. SIAM J.
Sci. Comput., 18(1):1–22, 1997. (Cited on pp. 207, 231.)

[155] Lawrence F. Shampine and S. Thompson. Solving DDEs in MATLAB. Appl. Numer.
Math., 37:441–458, 2001. (Cited on p. 223.)

[156] Gaurav Sharma and Jos Martin. MATLAB®: A language for parallel computing. Int.
J. Parallel Prog., 37(1):3–36, 2009. (Cited on p. 401.)

[157] G. W. Stewart. Matrix Algorithms. Volume I: Basic Decompositions. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1998. xx+458 pp. ISBN
0-89871-414-1. (Cited on p. 135.)

[158] G. W. Stewart. Matrix Algorithms. Volume II: Eigensystems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2001. xix+469 pp. ISBN 0-89871-
503-2. (Cited on p. 135.)

[159] Josef Stoer and Christoph Witzgall. Convexity and Optimization in Finite Dimensions
I. Springer-Verlag, Berlin, 1970. ix+293 pp. (Cited on p. 70.)

456 Bibliography

[160] Gilbert Strang. Introduction to Linear Algebra. Third edition, Wellesley-Cambridge
Press, Wellesley, MA, USA, 2003. viii+568 pp. ISBN 0-9614088-9-8. (Cited on p. 135.)

[161] Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry, and Engineering. Addison-Wesley, Reading, MA, USA, 1994.
xi+498 pp. ISBN 0-201-54344-3. (Cited on pp. 12, 195, 197, 199.)

[162] J. J. Sylvester. Chemistry and algebra. Nature, 17:284, 1878. (Cited on p. 358.)

[163] Alan Taylor and Desmond J. Higham. CONTEST: A controllable test matrix toolbox
for MATLAB. ACM Trans. Math. Software, 35(4):26:1–26:17, 2009. (Cited on p. 350.)

[164] Test set for IVP solvers, release 2.4. http://pitagora.dm.uniba.it/~testset. (Cited
on pp. 210, 211.)

[165] Lloyd N. Trefethen. Spectral Methods in MATLAB. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000. xvi+165 pp. ISBN 0-89871-465-6. (Cited
on pp. xxvi, 133, 289.)

[166] Lloyd N. Trefethen. Approximation Theory and Approximation Practice. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2013. viii+305 pp. ISBN
978-1-611972-39-9. (Cited on pp. 105, 133, 265.)

[167] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1997. xii+361 pp. ISBN 0-89871-
361-7. (Cited on p. 135.)

[168] Lloyd N. Trefethen and J. A. C. Weideman. The exponentially convergent trapezoidal
rule. SIAM Rev., 56(3):385–458, 2014. (Cited on p. 192.)

[169] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press,
Cheshire, CT, USA, 1983. 197 pp. (Cited on pp. 133, 134, 289.)

[170] Edward R. Tufte. Envisioning Information. Graphics Press, Cheshire, CT, USA, 1990.
126 pp. (Cited on p. 133.)

[171] Edward R. Tufte. Visual Explanations: Images and Quantities, Evidence and Narra-
tive. Graphics Press, Cheshire, CT, USA, 1997. 158 pp. ISBN 0-9613921-2-6. (Cited
on p. 133.)

[172] Charles F. Van Loan. Computational Frameworks for the Fast Fourier Transform. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992. xiii+273
pp. ISBN 0-89871-285-8. (Cited on p. 187.)

[173] Charles F. Van Loan. Using examples to build computational intuition. SIAM News,
28:1, 7, 1995. (Cited on p. xxvi.)

[174] Charles F. Van Loan. Introduction to Scientific Computing: A Matrix-Vector Approach
Using MATLAB. Prentice-Hall, Englewood Cliffs, NJ, USA, 2000. xi+367 pp. ISBN
0-13-949157-0. (Cited on p. 175.)

[175] D. Viswanath. Random Fibonacci sequences and the number 1.3198824 Math.
Comp., 69(231):1131–1155, 2000. (Cited on p. 8.)

[176] Stan Wagon. Mathematica in Action. Second edition, TELOS division of Springer-
Verlag, New York, NY, USA, 2000. xvi+592 pp. ISBN 0-387-98684-7. (Cited on
pp. 332, 337.)

[177] A. J. Wathen. Preconditioning. Acta Numerica, 24:329–376, 2015. (Cited on p. 154.)

[178] David S. Watkins. Fundamentals of Matrix Computations. Third edition, Wiley, New
York, 2010. xvi+644 pp. ISBN 978-0-470-52833-4. (Cited on p. 135.)

[179] Duncan J. Watts. Small Worlds. The Dynamics of Networks between Order and Ran-
domness. Princeton University Press, Princeton, NJ, USA, 1999. xv+262 pp. ISBN
978-0-691-11704-7. (Cited on p. 359.)

http://pitagora.dm.uniba.it/~testset

Bibliography 457

[180] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ net-
works. Nature, 393:440–442, 1998. (Cited on pp. 406, 409.)

[181] Junjie Wei and Shigui Ruan. Stability and bifurcation in a neural network model with
two delays. Physica D, 130:255–272, 1999. (Cited on p. 223.)

[182] Maurice V. Wilkes. Memoirs of a Computer Pioneer. The MIT Press, Cambridge,
MA, USA, 1985. viii+240 pp. ISBN 0-262-23122-0. (Cited on p. 248.)

[183] Paul Wilmott, Sam Howison, and Jeff Dewynne. The Mathematics of Financial Deriva-
tives: A Student Introduction. Cambridge University Press, Cambridge, UK, 1995.
xiii+317 pp. ISBN 0-521-49699-3. (Cited on pp. 226, 424.)

Index

The 18th century saw the advent of the professional indexer.

He was usually of inferior status—a Grub Street hack—

although well-read and occasionally a university graduate.

— G. NORMAN KNIGHT, Book Indexing in Great Britain: A Brief History (1968)

I find that a great part of the information I have was acquired by

looking up something and finding something else on the way.

— FRANKLIN P. ADAMS

A suffix “t” after a page number denotes a table, “f” a figure, “g” the glossary, “`” a
listing, and “n” a footnote. Entries in typewriter font are MATLAB functions, unless
marked as objects or properties,

! (system command), 27
(:), 56
, (comma), 4, 6, 24, 50
.* (array multiplication), 58, 86
... (continuation), 26
./ (array right division), 58
.\ (array left division), 58
.^ (array exponentiation), 59
.' (transpose), 59
/ (right division), 58
: (colon), 48 t, 54–57, 440 t
; (semicolon), 1, 2, 4, 6, 23, 50
<, 71
<=, 71
== (logical equal), 71, 293, 295
>, 71
>=, 71
@ (function handle), 159
[..] (matrix building), 6, 50
[] (empty matrix), 63, 68
% (comment), 10, 24, 84
%% (cell in program file), 265
%{ (block comment), 91
& (logical and), 74
&& (logical and, for scalars, with short-

circuiting), 74
\ (left division), see backslash (\)

^, 59
| (logical or), 74
|| (logical or, for scalars, with short-

circuiting), 74
>> (prompt), 1, 23, 24
' (conjugate transpose), 59
' (string delimiter), 5
'', 79, 235
~ (discard output arguments), 90
~ (logical not), 74
~= (logical not equal), 71
2D plotting functions, 114 t, 441 t
3D plotting functions, 123 t
3x+ 1 problem, 10

aborting a computation, 26
abs, 42 t
AbsTol option, 189
acos, 42 t, 269
acosd, 42 t
acosh, 42 t
acot, 42 t
acotd, 42 t
acoth, 42 t
acsc, 42 t
acscd, 42 t
acsch, 42 t

459

460 Index

addpath, 92
addpoints, 281
adjacency matrix, 349, 404
airy, 42 t
algebraic equations, see linear equations;

nonlinear equations
Algol 68, 57
algorithms, top ten, 187 t, 187
all, 74, 75, 440 t
amd, 252
and, 74
angle, 42 t
AnimatedLine object, 281
animation, 279–281
annotation, 109
anonymous function, 160–161, 183, 185,

404
origin in Lisp, 161

ans, 2, 4, 23, 439 t
any, 74, 75, 383, 440 t
App, 268
area, 114 t, 128
area graph, 128
arguments

default values for, 163–165
variable number of, 165–166

ARPACK, 155
array

categorical, 299–300, 306–307
character, 292–295
codistributed, 397–398
distributed, 397–398
empty, 379–380

testing for, 73 t
generation, 4–7, 47–54
logical, 77–78
multidimensional, 297–298
order of storage, 372–374
preallocating, 374
subscripts start at 1, 54, 56, 247
tall, 364–366

Array Editor, 31, 32 f, 445 g
array operations

elementary, 59 t
elementwise, 3, 58, 86

array2table, 308
ASCII file

loading from, 31
saving to, 31

asec, 42 t
asecd, 42 t
asech, 42 t
aside

anonymous function and lambda
expression, 161

backslash notation, 140
before pseudorandom number gen-

erators, 7
char maze, 295
chemical graphs, 358
classic MATLAB, 33
code complexity, 260
colon notation, 57
color maps, 119
color spaces, 99
fast Fourier transform, 186
iterating MATLAB commands, 94
reproducible research, 49
stiffness, 213
strings, 293
top ten algorithms, 187
zero-based versus one-based index-

ing, 56
asin, 42 t
asind, 42 t
asinh, 42 t
assert, 242–243, 269
assertions, 242–243
assume, 329, 330
assumptions, 329
atan, 42 t
atan2, 42 t
atand, 42 t
atanh, 42 t
attribute, sparse, 249
Axes object, 273, 278
axes, superimposing, 282
axis, 16, 102–104, 441 t

options, 103 t

backslash (\), 4, 58, 138–142, 144, 252,
338, 441 t, see also linsolve

balance, 150
balancing, 150
bar, 114 t, 125, 441 t
bar graph, 12, 125–126
bar3, 123 t, 126
bar3h, 123 t, 126
barh, 114 t, 125

Index 461

batch, 393, 395
batch computations, 393–395
bench, 27 t
bernstein, 342 t
bessel, 42 t
beta, 42 t
Bezier curve, 109
bfsearch, 353 t
bicg, 154, 155 t
bicgstab, 155 t
bicgstabl, 155 t
bifurcation diagram, 375
binomial coefficient, see nchoosek

Black–Scholes
delta surface, 422–425
PDE, 226–227

blkdiag, 50
block comment, 91
boundary value problem (BVP) solver,

213–220
dealing with an unknown param-

eter, 217–219
example files, 220
input and output arguments, 215–

216
boundary-value problem (BVP), two-

point, 213
Box property, 276
box, 101, 114, 276
brachistochrone, 403
break, 80
breakpoint, 245
Brownian path, 372
bsxfun, 63
bvp4c, 213–220, 372, 443 t
bvp5c, 220
bvpget, 220
bvpinit, 216, 220
bvpset, 216, 220, 372
bvpval, 220

C. elegans, 355
caldays, 303
caldiff, 303
calendarDuration, 303
calendarDuration array, 303–304
cardioid, 134
cart2pol, 42 t
cart2sph, 42 t
case, 80, 440 t

case sensitivity, 1, 24, 31
cat, 298, 298 t, 312–313
categorical, 299–300
categorical array, 299–300, 306–307
Cayley–Hamilton theorem, 176
ccode, 347
cd, 27
ceil, 42 t
cell, 308, 312, 374, 442 t
cell array, 101, 128, 165, 308–313

converting to and from, 312
displaying contents, 311–312
indexing, 310
preallocating, 312, 374
replacing comma-separated list, 312

cell2struct, 312
celldisp, 311
cellplot, 312
centrality, 353 t, 355
cgs, 155 t
char, 292–295, 442 t
characteristic polynomial, 148, 176, 339
charpoly, 339
Chebfun, 324
chebyshevT, 342 t
chebyshevU, 342 t
checkcode, 259, 260
Children property, 278
chol, 145, 252, 340 t
Cholesky factorization, 138, 145, 252
cholupdate, 145
circle, drawing with rectangle, 282
circshift, 298 t
circulant matrix, 321–324
clabel, 115–116
class, 83, 315–324, 445 g, see also data

type
class, 44, 291
classdef, 316
clc, 26, 442 t
clear, 9, 31, 92, 246, 311, 442 t
clearing

Command Window, see clc

figure window, see clf

workspace, see clear

clearvars, 31
clf, 102, 246, 441 t
client, 387
close, 8, 102, 246, 441 t

462 Index

CMYK color space, 99
code file, see program file
codistributed array, 397–398
coeffs, 339
colamd, 253
Collatz iteration, 10
colon notation, 5–6, 54–57
Color property, 98, 99 t
color maps, 119
color spaces, 99
colorbar, 115
colormap, 118, 119, 441 t
colormapeditor, 119
colors, default order for plotting, 98 f
colperm, 253
colspace, 340 t
comet, 114 t, 280–281
comet3, 123 t, 280
comma

to separate matrix elements, 6, 50
to separate statements, 4, 24

Command History, 26, 445 g
command line, editing, 26, 27 t
Command Window, 1, 23, 445 g

clearing, 26
command/function duality, 93–94, 130,

194
comment block, 91
comment line, 10, 24, 84
compan, 52 t
complex, 12, 30, 72, 330
complex arithmetic, 30, 37
complex numbers

entering, 30, 72
functions for manipulating, 42 t

complex variable, visualizing function
of a, 122

complexity, of a code, 260
Composite, 396
composite object, 396
computer, 27 t
cond, 137, 143, 441 t
condeig, 150
condest, 137–138, 143, 252
condition number (of eigenvalue), 150
condition number (of matrix), 137

estimation, 137
conj, 30, 42 t
conjugate transpose, 59

conncomp, 353 t
contains, 296
contentsrpt, 268
continuation line, 26
continuation method, 216
continue, 80
continued fraction, 7
contour, 114, 115, 123 t, 441 t
contour3, 123 t
contourf, 12, 123 t
conv, 176–177
copyfile, 27
cos, 42 t
cosd, 42 t
cosh, 42 t
cot, 42 t
cotd, 42 t
coth, 42 t
cov, 174
cplxroot, 122
cross, 60
cross product, 60
csc, 42 t
cscd, 42 t
csch, 42 t
CSV file, 308, 361
ctranspose, 60
Ctrl-C (stop execution), 26
cummax, 67 t
cummin, 67 t
cumprod, 67 t
cumsum, 67 t, 191, 372
Current Folder browser, 264, 268, 445 g
Curvature property, 282
Cuthill–McKee ordering, 253
cyclomatic complexity, 259, 260

data analysis
basic functions, 67 t, 440 t
dealing with large data sets, 361–

368
data fitting

interpolation, see interpolation
least-squares polynomial, 177

data type
calendarDuration array, 303–304
categorical array, 299–300, 306–307
cell, 308
char array, 292–295
datetime array, 300–304

Index 463

determining, 291
double, 39, 42–44
duration array, 300–304
function handle, 159–160
fundamental types, 291
int*, 44–45
logical, 71
multidimensional array, 297–298
single, 42–44
string array, 295–297
struct, 308
table, 304–308
timetable, 307–308
uint*, 44–45

DataAspectRatio property, 282
datastore, 361–364
datetime, 301, 363
datetime array, 300–304
dbclear, 245
dbcont, 245
dbdown, 245
dbquit, 245
dbstop, 245
dbtype, 245
dbup, 245
dde23, 221–225
ddensd, 225
ddesd, 223
ddeset, 223
deal, 382
debugger, 245–246
debugging, 245–247
decic, 213
deconv, 176–177, 341
degree, 350, 353 t
delay-differential equations (DDEs), 221–

225
delete, 27, 276, 388
demo, 27 t, 442 t
deprpt, 268
det, 142–143, 340 t
details, 301
determinant, 142
deval, 199, 216
dfsearch, 353 t
diag, 64 t, 65–66, 340 t, 440 t
diagonal matrix, 65–66
diagonals

of matrix, 65–66

assigning to, 384–385
of sparse matrix, 250–251

diary, 32, 233, 442 t
diff, 67 t, 68, 332–334
differential equations

numerical solution, 12, 193–229
symbolic solution, 335–336

differential-algebraic equations (DAEs),
210–213

digits, 343–347
digraph, 353 t, 351–357
dimension of array/matrix, 36, 47, 297
dir, 9, 27, 442 t
directed graph, 349
direction field, see vector field

directory
changing, making, listing, print-

ing, 27
private, 169

discretize, 357
disp, 32, 234, 442 t
distributed array, 397–398
division, 58–59

left, 57
right, 57

doc, 28, 442 t
docsearch, 28
dot, 2, 60
dot product, 2, 60
double (function), 332, 442
double data type, 39, 42–44
double integral, 192
drawnow, 281
dsolve, 335–336
duration, 303
duration array, 300–304

echo, 234
edit, 9, 90, 441 t
Editor/Debugger, 9, 90, 91 f, 174, 245,

246, 257, 445 g
eig, 5, 148–152, 255, 339, 340 t, 441 t
eigenvalue, 148

generalized, 151
eigenvalue problem

generalized, 151
Hermitian definite, 152

numerical solution
direct, 148–153
iterative, 155–156

464 Index

polynomial, 153
quadratic, 153
standard, 148
symbolic solution, 339

eigenvector, 148
generalized, 151

eigs, 155–156, 253, 255
elementary functions, 42 t
elementary matrix functions, 48 t
ellipj, 42 t
ellipke, 42 t
elliptic integral, 332
empty array, 379–380, see also empty

matrix
testing for, 73 t

empty matrix, 63–64, 68, see also empty
array

as subscript, 379–380
end (flow control), 78–80
end (subscript), 55, 440
epicycloid, 104–105
eps, 39, 43, 439 t
equations

algebraic, see linear equations; non-
linear equations

differential, see differential equa-
tions

linear, see linear equations
nonlinear, see nonlinear equations

erf, 42 t, 422
error, 201, 242, 440 t
error messages, understanding, 241–242
errorbar, 114 t
errors, 241–242
eval, 294
event location, 201–203
exist, 82, 92
existsOnGPU, 399
exit, 1, 25, 442 t
exp, 42 t
expint, 42 t
expm, 156, 174, 340 t
expm1, 42, 42 t
exponential, of matrix, 156
exponentiation, 59
export fig, 131
external codes, calling, 375–378
eye, 6, 43, 47, 48 t, 439 t

factor, 42 t

factorial, 42 t, 372
false, 71
fast Fourier transform, 185–187
fcontour, 114
fetchNext, 393
fetchOutputs, 395
FevalFuture object, 393
fft, 185, 322, 443 t
fft2, 186
fftn, 186
fftw, 186
Fibonacci sequence, 242 `

random, 8
FIG-file, 131, 445 g
figure, 445 g
figure, 102
Figure object, 273
figure window, 97

clearing, 102
closing, 102
creating new, 102

figure, saving and printing, 129–131
File Exchange, see MATLAB Central

File Exchange
fill, 109, 114 t, 215
fill3, 123 t
find, 75–78, 250, 440 t
findall, 278, 282
findedge, 353 t
findnode, 353 t
findobj, 278, 282
findstr, 294
Fisher’s equation (PDE), 432–434
fix, 42 t
flip, 64 t
fliplr, 64 t
flipud, 64 t
float, 291
floating-point arithmetic, 39

IEEE standard, 39
range, 39
subnormal number, 40
unit roundoff, 39

floor, 42 t
flow control, 78–82
fmesh, 118, 123 t
fminbnd, 174, 184, 443 t
fminsearch, 184, 185, 404
folder, see directory

Index 465

FontAngle property, 100, 276
default, 101 t

FontSize property, 100, 106, 281, 282
default, 101 t

FontWeight property, 109, 276
fopen, 236
for, 7, 79, 440 t
for loops, avoiding by vectorizing, 370–

372
format, 3, 25, 26 t, 41, 442 t
fortran, 347
forward slash operator, /, 138
Fourier transform, discrete, 185–187,

322
fplot, 109–112, 114 t, 441 t
fplot3, 123 t
fprintf, 234–236, 442 t
fractal landscape, 119
Frank matrix, 150, 337–339
fread, 237
Fresnel integrals, 191, 347
fresnelc, 347
fresnels, 347
fscanf, 237
fsurf, 118, 123 t
full, 249
function, 83–94, 159–174, 445 g

anonymous, 160–161, 183, 185, 404
origin in Lisp, 161

arguments, copying of, 375
arguments, defaults, 163–165
arguments, multiple input and out-

put, 35–37, 86–90
definition line, 84
determining program files it calls,

268–269
documenting, 85
evaluating with feval, 160
existence of, testing, 92
H1 line, 85, 92
handle, 159–160, 162
local, 161–163
of a matrix, 61, 156–158
nested, 168–169, 198, 216, 404, 412
passing as argument, 159–160, 162
private, 169–170
recursive, 12–16, 119, 170–171, 420–

422
subfunction, see function, local

function/command duality, 93–94
funm, 157–158, 340 t
fwrite, 237
fzero, 181, 182, 184, 219, 404, 443 t

gallery, 51, 52 t, 53 t, 170, 253, 337,
439 t

gamma, 42 t
gather, 365, 366, 399
Gaussian elimination, see LU factor-

ization
gca, 276
gcd, 42 t
gcf, 276
gco, 276, 278
gegenbauerC, 342 t
generalized eigenvalue problem, 151
generalized real Schur decomposition,

153
generalized Schur decomposition, 153

reordering, 153
generalized singular value decomposi-

tion, 148
get, 26, 278–279, 395
getframe, 279
ginput, 233
Git, 264
GitHub, 269
Givens rotation, 371
global, 83, 173
global variables, 173
glossary, 445–446
gmres, 155, 155 t
GPU Computing, 398–400
gpuArray, 399–400
gpuDevice, 398
gpuDeviceCount, 399
gputimeit, 400
grabcode, 265
gradient, 334, 335, 417
graph

directed, 349
undirected, 349, 404

graph, 349–351, 353 t
Graphical User Interface (GUI) tools,

278
graphics, 97–133, 273–282

2D, 97–113
summary of functions, 114 t, 441 t

3D, 113–122

466 Index

summary of functions, 123 t
animation, 279–281
hierarchical object structure, 274 f,

278
labelling, 101, 114
legends, 105–106
NaN in function arguments, 122
optimizing for presentations, 279
optimizing for printed output, 130–

131, 279
Plot Editor, 97
property values, factory-defined, 278–

279
saving and printing, 129–131
specialized, 125–129

grid, 12, 104, 441 t
Gridalpha property, 104, 275
GridColor property, 104, 275
griddata, 179–180
griddata3, 180
griddatan, 180
griddedInterpolant, 180
GridLineStyle property, 104, 275
groot, 278
gsvd, 148, 174
gtext, 106
GUI tools, see Graphical User Inter-

face (GUI) tools

H1 line, 85, 92
hadamard, 52 t, 174
handle

to function, see function handle
to graphics object, 273

HandleVisibility property, 282
hankel, 51, 52 t
hasdata, 363
help, 1, 28, 85, 442 t

for local functions, 162
Help browser, 28, 30 f, 445 g
hermiteH, 342 t
Hermitian matrix, 135
hess, 151–153
Hessenberg factorization, 151, 152
Hessenberg matrix, 138
hessian, 334, 335, 417
hidden, 116
highlight, 350, 353 t
hilb, 51, 52 t
Hilbert matrix, 51

histogram, 8, 126–128
histogram, 8, 97, 114 t, 126–128, 300,

364, 441 t
hold, 101, 441 t
HorizontalAlignment property, 109,

282
Horner’s method, 175
hypot, 42 t, 430

i (
√
−1), 30, 246, 439 t

ichol, 154
identity matrix, 47

sparse, 250
IEEE arithmetic, 39–41, 445 g
if, 10, 78–79, 440 t
ifft, 185, 322
ifft2, 186
ifftn, 186
ilu, 154
imag, 30, 42 t
image, 133
imaginary unit (i or j), 5, 30
implicit expansion, 61–63
Import Wizard, 32
imread, 81
indexing, see subscripting
inf, 39, 439 t

exploiting, 380
inmem, 268
inner product, 2, 60
input

from file, 236–237
from the keyboard, 233
via mouse clicks, 233

input, 10, 233, 442 t
inputParser, 168
int, 330–332
int* data type, 44–45
int16, 44
int2str, 130, 235, 293, 294
int32, 44
int64, 44
int8, 44
integer, 292
integral, 189–192, 372, 389, 443 t

default error tolerances, 189, 189 t
integral2, 192–193
integral3, 193
integration

double, 192–193

Index 467

numerical, see numerical integra-
tion

symbolic, 330–332
interp1, 178–179, 303, 443 t
interp2, 179
interp3, 180
interpn, 180
interpolation

1D (interp1), 178
2D (interp2, griddata), 179
multidimensional, 180
polynomial, 177
spline, 177

Interpreter property, 109
intmax, 45
intmin, 45
inv, 25, 142, 338, 340 t
inverse matrix, 142

symbolic computation, 338
invhilb, 51, 52 t
ipermute, 298 t
isa, 291
isAlways, 329
isbanded, 136 t
ischar, 73 t, 294
iscolumn, 73 t
isdiag, 136 t
isempty, 73 t, 163, 440 t
isequal, 72, 73 t, 440 t
isequaln, 73 t
isfield, 310
isfinite, 73 t, 75
isfloat, 73 t, 292
isgraphics, 274
ishermitian, 136 t
isinf, 72, 73 t
isinteger, 73 t, 292
isisomorphic, 353 t
iskeyword, 92
islogical, 73 t
ismac, 93
ismatrix, 73 t
ismember, 383, 384
ismissing, 304
isnan, 69, 72, 73 t
isnumeric, 73 t, 292
isomorphism, 353 t
ispc, 93
isprime, 42 t

isreal, 72, 73 t
isrow, 73 t
isscalar, 73 t
issorted, 73 t
issparse, 73 t, 252
isstring, 73 t
issymmetric, 136 t
istril, 136 t
istriu, 136 t
isunix, 93
isvector, 73 t
iterative eigenvalue problem solvers, 155–

156
iterative linear equation solvers, 140 t,

155 t, 153–155

j (
√
−1), 30, 246, 439 t

jacobian, 334
jacobiP, 342 t
jet color map, 120 t
Job Monitor, 395
join, 296
jordan, 340 t
Just-In-Time (JIT) accelerator, 369

keyboard, 245
keypresses for command line editing,

27 t
keywords, 92
Koch curves, 170–171
Koch snowflake, 170–171
kron, 60
Kronecker product, 60

L-systems, 420–422
LabelFontSizeMultiplier property, 276
labindex, 395
laguerreL, 342 t
lambda expression, 161
lambertw, 388
LAPACK, 135, 137, 445 g
lasterr, 242
lastwarn, 243
LATEX, 109, 129, 331, 347

formatting output for, 238
TikZ and PGFPlots packages, 131

latex, 331, 347
lcm, 42 t
ldl, 144, 252

468 Index

least-squares data fitting, by polyno-
mial, 177

least-squares solution to overdetermined
system, 141

legend, 105–106, 441 t
legendre, 42 t
legendreP, 342 t
length, 47, 440 t
license, 27 t
'like' argument, 397, 400
line, 282
linear algebra functions, symbolic, 340 t
linear equations, 138–142, see also overde-

termined system; underdeter-
mined system

numerical solution
direct, 138–142
iterative, 153–155

symbolic solution, 338
LineWidth property, 99

default, 101 t
linsolve, 140 t, 138–140
linspace, 12, 48 t, 57, 439 t
Lisp, 161, 315
Live Editor, 264–265, 331, 445 g
live script, 83, 264–265, 445 g
load, 31, 52, 442 t
local function, 161–163
log, 42 t
log10, 42 t
log1p, 42, 42 t
log2, 42 t
logarithm, of matrix, 156
logical, 77–78
logical array, 77–78
logical data type, 71
logical operators, 73–78
logistic differential equation, 335
loglog, 100, 114 t
logm, 156, 340 t
logspace, 48 t
lookfor, 92, 441 t
loop structures, see for, while
lorenz, 12, 281
Lorenz equations, 12
ls, 9, 27
lsqnonneg, 141
lsqr, 155 t
lu, 90 t, 143, 252, 340 t, 441 t

LU factorization
partial pivoting, 138, 143–144, 252
threshold pivoting, 252

M-file, see program file
magic, 51, 52 t
Mandelbrot set, 12
MapReduce, 364
mapreduce, 364
MarkerEdgeColor property, 100

default, 101 t
MarkerFaceColor property, 100

default, 101 t
MarkerSize property, 99

default, 101 t
MAT-file, 31, 133, 445 g
MATLAB -singleCompThread, 397
MATLAB Central File Exchange, 83,

269
MATLAB desktop, 2 f, 23, 445 g
MATLAB releases, xxiii t
MATLAB Toolstrip, 23, 446 g
MATLAB Web browser, 446 g
MATLAB, classic, 33
matlab.apputil.package, 269
matlab.codetools.requiredFilesAnd-

Products, 268
matlab.lang.makeValidName, 258
matlab2tikz, 131
matlabFunction, 347
matlabrc, 92
matrix

adjacency, 349, 404
block diagonal, 50
block form, 50
circulant, 321–324
condition number, 137
conjugate transpose, 59
deleting a row or column, 64
diagonal, 65–66
empty, 63–64, see empty matrix
exponential, 156
Frank, 150, 337–339
function of, 61, 156–158
generation, 4, 6–7, 47–52
Hermitian, 135
Hermitian positive definite, 138
Hessenberg, 138
Hilbert, 51
identity, 47

Index 469

shifting by multiple of, 385
sparse, 250

inverse, 142
logarithm, 156
manipulation functions, 64 t, 440 t
norm, 136–137
orthogonal, 135
rank-1, forming, 382–383
reshaping, 64
skew-Hermitian, 135
skew-symmetric, 135
square root, 156
storage in column major order, 373–

374
submatrix, 6, 54
subscripting as vector, 384–385
symmetric, 135
transpose, 59
triangular, 66, 138
unitary, 135
Wathen, 154

matrix operations
elementary, 59 t
elementwise, 3, 58, 86

max, 36, 62, 67 t, 67–68, 372, 440 t
max-plus algebra, 315–321
maxflow, 353 t
McCabe complexity, 259
mean, 67 t, 440 t
median, 67 t
membrane, 116, 260
mesh, 116, 118, 123 t, 441 t
meshc, 116, 123 t
meshgrid, 12, 48 t, 115, 179, 180, 424
meshz, 121, 123 t
method of lines, 208
methods, 316, 400
MEX interface, 375, 446
mfilename, 167
min, 62, 67 t, 67–68, 440 t
minimization of nonlinear function, 184–

185
minimum-degree ordering, 253
minres, 153, 155 t
minspantree, 353 t
mkdir, 27
mkpp, 178
mldivide, 138
mlintrpt, 260

mod, 42 t
mode, 67 t
more, 92
movie, 279
movies, 279–280
movmax, 67 t
movmean, 67 t
movmedian, 67 t
movmin, 67 t
movstd, 67 t
movsum, 67 t
mrdivide, 138
multidimensional array, 297–298

functions for manipulating, 298 t
multiplication, 58–59

namelengthmax, 31
NaN, 439 t
NaN (Not a Number), 40, 67, 439 t

in graphics function arguments, 122
removing, 69
for representing missing data, 69
testing for, 72

nargin, 88, 163, 441 t
narginchk, 167, 430
nargout, 88, 166, 441 t
nargoutchk, 167
NaT, 304
nchoosek, 42 t, 174
ndgrid, 298 t
ndims, 297, 298 t
nearest, 353 t
neighbors, 353 t
Nelder–Mead simplex algorithm, 185
nested function, 168–169, 198, 216, 404,

412
nextpow2, 42 t
nnz, 250, 384, 412 n
nonlinear equations

numerical solution, 180–184
symbolic solution, 327–329

nonlinear minimization, 184–185
nonzeros, 250
norm

evaluating dual, 380
matrix, 136–137
vector, 35–36, 136

norm, 35–36, 136–137, 380, 441 t
normally distributed random numbers,

6, 48

470 Index

normest, 137
normest1, 137–138
not, 74
nthroot, 42 t
null, 147, 340 t
num2cell, 312
num2str, 235, 293, 442 t
number theoretic functions, 42 t
numden, 341
numedges, 349, 353 t
numeric, 292
numerical integration, 189–193

adaptive, 191
double integral, 192–193

numnodes, 349, 353 t
nzmax, 250

object-oriented programming, 315–324
ode113, 208 t
ode15i, 208 t, 211
ode15s, 205, 208, 208 t, 210, 211, 226
ode23, 208 t
ode23s, 208 t
ode23t, 208 t, 210
ode23tb, 208 t
ode45, 12, 174, 193–199, 208 t, 443 t

behavior on stiff problems, 205–
207

odeexamples, 213
odeget, 213
odephas2, 213
odeset, 197, 201, 205, 207, 211, 213,

226, 372
onCleanup, 258, 259
ones, 6, 43, 47, 48 t, 297, 439 t
open, 131
openvar, 31
operator precedence, 75, 76 t

arithmetic, 41, 41 t
operators

logical, 73–78
relational, 71–78

Optimization Toolbox, 181 n, 185
optimizing codes, 369–375
optimset, 182, 184
or, 74
ordeig, 151
ordinary differential equation (ODE)

solvers, 208 t
default error tolerances, 189 t, 197

error control, 197
evaluating solution at intermedi-

ate values, 199
event location, 201–203
example files, 213
input and output arguments, 194,

197
Jacobian, specifying, 207–210
mass matrix, specifying, 210–213
obtaining solutions at specific times,

194
option setting with odeset, 197
output as structure, sol, 198
symbolic, 335–336
tolerance proportionality, 197

ordinary differential equations (ODEs),
12, 193–220

boundary-value problem (BVP), 213
higher order, 195
initial-value problem, 193
pursuit problem, 201–203
Robertson problem, 205
Rössler system, 197–199
simple pendulum equation, 195
stiff, 205–213

ordqz, 153
ordschur, 151
orth, 147, 340 t
otherwise, 80
outer product, 3
output

to file, 236–237
to screen, 234–236

output arguments
discarding with ˜, 90
function behavior depending on num-

ber of, 36
overdetermined system, 140–141

basic solution, 141
minimal 2-norm solution, 141

overloading, 300, 303, 315, 316, 318,
322, 332, 338, 339, 341, 350

P-code, 261–264
Parallel Computing Toolbox, 387–401
parcluster, 395
Parent property, 278
parfeval, 392–393
parfevalOnAll, 393
parfor, 388–392, 397

Index 471

parpool, 387, 388
partfrac, 342
Partial Differential Equation Toolbox,

229
partial differential equations (PDEs),

208, 225–229
parula color map, 119, 120 t
pascal, 52 t
path, 92
path (MATLAB search path), 91–92
pathtool, 92
pause, 233
Pause button, 91
pcg, 155 t, 153–155, 174
pchip, 178
pcode, 261–264
PDE solver, 225–229
pdepe, 225–229
pdeval, 226
peaks, 122
performance profile, 409–416
performance testing, 272
perms, 42 t
permutations, 380–382
permute, 298 t
persistent, 173
persistent variables, 173
phase plane plot, 196
phase, of complex number, see angle

pi, 4, 30, 439 t
pie, 114 t, 128
pie charts, 128
pie3, 123 t, 128
pinv, 141, 143
pitfalls, 246–247
pivoting, see partial pivoting; rook piv-

oting
plot, 8, 97–100, 114 t, 350, 353 t, 441 t

options, 99 t
Plot Editor, 97
plot3, 113, 123 t
plotedit, 97, 278
plotting functions

2D, 114 t, 441 t
3D, 123 t

pmode, 401
point, 100
pol2cart, 42 t
polarplot, 114 t

poly, 148, 176, 340 t
poly2sym, 339, 341
polyder, 176
polyeig, 153
polyfit, 177, 443 t
polynomial

division, 176
eigenvalue problem, 153
evaluation, 175–176

of derivative, 176
multiplication, 176
representation, 175
root finding, 176

polynomials, symbolic, 342 t
polyval, 175, 176
polyvalm, 175, 176
Position property, 276, 282
positive definite matrix, 138

testing for, 145
pow2, 42 t
power method, 137
ppval, 178
preallocating arrays, 374
precedence

of arithmetic operators, 41, 41 t
of operators, 75, 76 t

precision, 25, 39
preconditioning, 154
pretty, 331, 336
preview, 362
primes, 42 t, 57
print, 129–131, 441 t
printing

a figure, 129–131
to file, 236–237
to screen, 234–236

private function, 169–170
prod, 67 t, 372, 440 t
profile, 260–261
profiling, 260–261
program file, 83–94, 159–174, 257–261,

446 g
commenting out a block, 91
determining codes it calls, 268–269
editing, 90–91
function, 83–94, 159–174, 445 g, see

also function
H1 line, 85, 92
live script, 83

472 Index

names, 90, 92
optimizing, 369–375
script, 9, 24, 83–84, 446 g
search path, 91
style, 257–258
vectorizing, 370–372

pseudo-inverse matrix, 143
psi, 42 t
publish, 265
pursuit problem, 201–203
pwd, 9, 27
Pythagorean sum, 430–432

qmr, 154, 155 t
qr, 145–146, 253, 340 t, 441 t
QR algorithm, 151
QR factorization, 145–146

column pivoting, 141, 146
of sparse matrix, 253

qrdelete, 146
qrinsert, 146
qrupdate, 146
quad, 191
quadgk, 168, 191
quadl, 191
quadratic eigenproblem, 153
quadrature, see numerical integration
quit, 1, 25, 442 t
quiver, 114 t, 195
quorem, 341
quote mark, representing within string,

79, 235
qz, 153
QZ algorithm, 152, 153

rainbow color map, 119
rand, 6, 25, 48, 48 t, 297, 439 t
randi, 48 t
randn, 6, 48, 48 t, 297, 424, 439 t
random number generators

period, 49
RAND corporation book, 7
seed, 6
state, 49

randperm, 382
rank, 147, 340 t
rat, 42 t
rats, 42 t
rcond, 137, 138, 142, 143
reaction–diffusion equations, 227–229

read, 362
ReadSize property, 362
readtable, 236, 301, 307
real, 30, 42 t, 247
real Schur decomposition, 151

generalized, 153
realmax, 39, 43
realmin, 40, 43
rectangle, 282
recursive function, 12–16, 119, 170–171,

420–422
Refine option, 207
relational operators, 71–78
RelTol option, 189
rem, 42 t
reordernodes, 353 t
repelem, 60
replace, 296
repmat, 48 t, 51, 310, 374, 383, 440 t
reproducible research, 49
reset, 279, 336, 399
reshape, 64, 64 t, 440 t
retime, 308
return, 88, 245
reverse, 296
RGB color space, 99
Riemann surface, 122, 124 f
rng, 6, 49
Robertson ODE problem, 205
rook pivoting, 144
Root object, 273

assignable properties, 278
roots, 176, 443 t
rosser, 52 t
Rössler ODE system, 197–199
rot90, 64 t
Rotation property, 106
round, 42 t
rounding error, 25
rowfun, 308
rref, 148, 340 t
run, 92
Runge–Kutta method, 193
runperf, 272
runtests, 269

save, 31, 442 t
saveas, 131
scalar expansion, 57, 60, 375, 385, 412
scatter, 114 t

Index 473

scatter3, 123 t
scatteredInterpolant, 180
schur, 151
Schur decomposition, 151

generalized, 153
generalized real, 153
real, 151
reordering, 151

script, 9, 24, 83–84
live, 83, 445 g
one-line, 295

search path, 91
sec, 42 t
secd, 42 t
sech, 42 t
semicolon

to denote end of row, 2, 4, 6, 50
to suppress output, 1, 4, 23

semilogx, 101, 114 t
semilogy, 9, 101, 114 t, 441 t
set, 26, 275, 278–279, 282
set operations, 383–384
shading, 118
shg, 102, 441 t
shiftdim, 298 t
short-circuiting of logical expressions,

75
shortestpath, 353 t
shortestpathtree, 350, 351, 353 t
Sierpinski gasket, 12–18
sign, 42 t
simplify, 327
Simpson’s rule, 191
sin, 42 t
sind, 42 t
single (function), 43
single data type, 42–44
single program, multiple data (SPMD),

395–397
singular value decomposition (SVD), 146–

148
generalized, 148

sinh, 42 t
size, 36, 47, 297, 440 t
skew-Hermitian matrix, 135
skew-symmetric matrix, 135
small-world networks, 404–409
smithForm, 340 t
solve, 327–329, 417

sort, 67 t, 66–68, 296, 341, 380, 440 t
source control, 264
sparse (function), 249–250, 407, 442
sparse attribute, 249
sparse matrix, 153–156, 249–255

reordering, 253
storage required, 250
visualizing, 252

spdiags, 208, 250–251
special functions, 42 t
special matrix functions, 52 t
spectral radius, 321
speye, 250
sph2cart, 42 t
spiral, 52 t, 384
spline, 177, 443 t
spline interpolation, 177
split, 296
spmd, 395–397
spones, 250
spparms, 255
sprand, 251
sprandn, 251
sprintf, 235, 293, 442 t
spy, 252, 253, 441 t
sqrt, 42 t, 61
sqrtm, 61, 156, 340 t
sqrtm tri, 174
square root of a matrix, 156
squeeze, 298 t
stairs, 114 t, 410
standard deviation, 67
startup, 92
std, 67 t, 440 t
stem3, 123 t
stiff ordinary differential equation, 205–

213
storage allocation, automatic, 35
str2func, 160
strcat, 293
strcmp, 293
strcmpi, 293
strfind, 294
string

comparison, 293
concatenation, 293
conversion, 292
representation, 292
TEX notation in, 106, 107 t

474 Index

string, 293, 295–297
string array, 295–297
struct, 308, 309, 374, 442 t
struct2cell, 312
structure, 308–313, 329

accessing fields, 309
bvpset, for BVP solver options,

216
odeset, for ODE solver options,

197
optimset, for nonlinear equation

solver options, 182
preallocating, 309–310, 374

sub2ind, 385
subclass, 316
subfunction, see local function
subgraph, 353 t
submatrix, 6, 54
subnormal number, 40
subplot, 109–112, 441 t

irregular grid, 112
subs, 328, 343
subscripting, 54–57

end, 55
single subscript for matrix, 76, 384–

385
subscripts start at 1, 54, 56, 247
zero-based versus one-based, 56,

247
Subversion, 264
sum, 67, 67 t, 67–68, 440 t
summary, 299, 305
superclass, 316
surf, 116, 118, 123 t, 441 t
surfc, 116, 122, 123 t
svd, 147, 340 t, 441 t
svds, 156, 253
switch, 80–81, 174, 422, 440 t
sylvester, 140 t
sym, 325–327, 329–330
sym2poly, 339
symamd, 253
Symbolic Math Toolbox, 325–347
symbolic object, 325
symmetric matrix, 135
symmlq, 153, 155 t
symrcm, 253
syms, 325, 329–330
symvar, 327

synchronize, 308
system command (!), 27

tab completion, 1, 26
table, 304–308
table2array, 308
table2timetable, 307
tall, 365
tall array, 364–366
tan, 42 t
tand, 42 t
tanh, 42 t
taylor, 336–337
Taylor series, 336–337
taylortool, 337
test matrix

functions, 52 t, 53 t
properties, 55 t

TEX commands, in text strings, 106,
107 t

texlabel, 106
text, 106, 441 t
textscan, 237, 301
tfqmr, 155 t
tic, 156, 369–370, 442 t
tick marks, 282, 412
TickLength property, 282
timeit, 370, 400
timerange, 308
timetable, 307–308
timing a computation, 156, 369–370
title, 101, 441 t
TitleFontSizeMultiplier property, 276
toc, 156, 369–370, 442 t
toeplitz, 51, 52 t, 406, 407, 427
tolerance, mixed absolute/relative, 189
Tony’s trick, 383, 412
toolbox, 446 g

creating, 265–268
Toolboxes

Optimization Toolbox, 181 n, 185
Parallel Computing, 387–401
Symbolic Math Toolbox, 325–347

Toolstrip, 90, 264
transpose, 60
trapezium rule, 192
trapz, 192
triangular matrix, 138
triangular parts, 66
trigonometric functions, 42 t

Index 475

tril, 64 t, 66, 340 t, 440 t
triu, 64 t, 66, 340 t, 440 t
true, 71
turtle graphics, 420–422
type, 92, 441 t

uiimport, 32
uint* data type, 44–45
uint16, 44
uint32, 44
uint64, 44
uint8, 44
UMFPACK, 252
underdetermined system, 141–142

basic solution, 141
minimal 2-norm solution, 141

undirected graph, 349, 404
uniformly distributed random numbers,

6, 48
unique, 365, 412
unit roundoff, 39
unit tests, 269–272
unitary matrix, 135
Units property, 276
unmkpp, 178
unwrap, 42 t

validateattributes, 167
validatestring, 168
vander, 52 t
var, 67 t, 174
varargin, 165–166, 174, 312
varargout, 165–166, 174, 312
varfun, 308
variable names, 31

camel case, 258
choosing, 92, 173, 258
pothole case, 258
snake case, 258

variable-precision arithmetic, 343–347
variables

global, 173
listing, 7, 31
loading, 31
persistent, 173
removing, 9, 31
saving, 31
testing for existence of, 92

variance, 67
vector

field, 195, 196
generation, 5–6

linearly spaced, see linspace

logarithmically spaced, see log-

space

logical, 77–78
norm, 136
product, 60

vectorizing
codes, 370–372
empty subscript produced, 379–380

ver, 27 t, 268, 325
version, 27 t
version control, 264
VerticalAlignment property, 282
VideoWriter, 280
view, 118, 119, 433
visdiff, 260
vpa, 344–347
vpasolve, 345

wait, 395
waitbar, 12, 278
warning, 138, 243–245
waterfall, 118, 123 t, 434
Wathen matrix, 154, 253
Waypoints, 190
web, xxiv
what, 92, 442 t
which, 92, 246, 441 t
while, 10, 80, 440 t
who, 7, 31, 442 t
whos, 7, 31, 44, 250, 442 t
why, 95, 174
wilkinson, 52 t
worker, 387
workspace, see variables
workspace, 31
Workspace browser, 31, 32 f, 446 g
writetable, 236, 308

XData property, 279
xlabel, 12, 101, 441 t
xlim, 103 t, 104, 441 t
xlsread, 236
xlswrite, 236
xor, 74
XScale property, 416
XTick property, 282
xtickangle, 113

476 Index

xtickformat, 113
xticklabels, 113
xticks, 113

YData property, 279
YDir property, 282
ylabel, 12, 101, 441 t
ylim, 103 t, 104, 441 t
ytickangle, 113
ytickformat, 113
YTickLabel property, 282
yticklabels, 113
yticks, 113
yyaxis, 114 t, 282

ZData property, 279
zeros, 6, 43, 47, 48 t, 297, 439 t
zlabel, 114
zoom, 102

OT150

9781611974652

90000
ISBN 978-1-611974-65-2

MATLAB is an interactive system for numerical computation that is widely used for teaching
and research in industry and academia. It provides a modern programming language and
problem solving environment, with powerful data structures, customizable graphics, and
easy-to-use editing and debugging tools.

This third edition of MATLAB Guide completely revises and updates the best-selling second
edition and is 25 percent longer. The book remains a lively, concise introduction to the most
popular and important features of MATLAB and the Symbolic Math Toolbox.

Key features are
• a tutorial in Chapter 1 that gives a hands-on overview of MATLAB,
• a thorough treatment of MATLAB mathematics, including the linear algebra and

numerical analysis functions and the differential equation solvers, and
• a web page at http://www.siam.org/books/ot150 that provides example program files,

updates, and links to MATLAB resources.

The new edition
• contains color figures throughout,
• includes pithy discussions of related topics in new “Asides” boxes that augment the text,
• has new chapters on the Parallel Computing Toolbox, object-oriented programming,

graphs, and large data sets,
• covers important new MATLAB data types such as categorical arrays, string arrays, tall

arrays, tables, and timetables,
• contains more on MATLAB workflow, including the Live Editor and unit tests, and
• fully reflects major updates to the MATLAB graphics system.

This book is suitable for both beginners and more experienced users, including students,
researchers, and practitioners.

Desmond J. Higham is 1966 Chair of Numerical Analysis at the University of
Strathclyde, UK. His research focuses on stochastic computation, network science,
and city analytics. He is a SIAM Dahlquist Prize winner, a SIAM Fellow, and a Fellow
of the Royal Society of Edinburgh.

Nicholas J. Higham is Richardson Professor of Applied Mathematics at the
University of Manchester, UK. His research focuses on numerical linear algebra, and
he has contributed numerous functions to MATLAB. He is a Fellow of the Royal
Society, a SIAM Fellow, and a Member of Academia Europaea.

For more information about SIAM books, journals,
conferences, memberships, or activities, contact:

Society for Industrial and Applied Mathematics
3600 Market Street, 6th Floor

Philadelphia, PA 19104-2688 USA
+1-215-382-9800 • Fax +1-215-386-7999

siam@siam.org • www.siam.org

OT150

DesmonD J. HigHam

nicHolas J. HigHam

D
e

s
m

o
n

D J. H
ig

H
a

m
 • n

ic
H

o
l

a
s J. H

ig
H

a
m

Third EdiTion

T
h

ir
d E

d
iT

io
n

286-185_OT150_Higham_cover11-01-16.indd 1 11/1/2016 10:39:48 AM

	Cover
	Title Page
	Copyright
	Contents
	List of Figures
	List of Tables
	List of Program Files
	Preface
	1. A Brief Tutorial
	2. Basics
	3. Distinctive Features of MATLAB
	4. Arithmetic
	5. Matrices
	6. Operators and Flow Control
	7. Program Files
	8. Graphics
	9. Linear Algebra
	10. More on Functions
	11. Numerical Methods: Part I
	12. Numerical Methods: Part II
	13. Input and Output
	14. Troubleshooting
	15. Sparse Matrices
	16. More on Coding
	17. Advanced Graphics
	18. Other Data Types and Multidimensional Arrays
	19. Object-Oriented Programming
	20. The Symbolic Math Toolbox
	21. Graphs
	22. Large Data Sets
	23. Optimizing Codes
	24. Tricks and Tips
	25. The Parallel Computing Toolbox
	26. Case Studies
	Appendix A: The Top 111 MATLAB Functions
	Glossary
	Bibliography
	Index

